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Abstract—Modern deep learning systems rely on (a) a hand-
tuned neural network topology, (b) massive amounts of labelled
training data, and (c) extensive training over large-scale compute
resources to build a system that can perform efficient image
classification or speech recognition. Unfortunately, we are still
far away from implementing adaptive general purpose intelligent
systems which would need to learn autonomously in unknown
environments and may not have access to some or any of
these three components. Reinforcement learning and evolutionary
algorithm (EA) based methods circumvent this problem by
continuously interacting with the environment and updating
the models based on obtained rewards. However, deploying
these algorithms on ubiquitous autonomous agents at the edge
(robots/drones) demands extremely high energy-efficiency due
to (i) tight power and energy budgets, (ii) continuous / life-
long interaction with the environment, (iii) intermittent or no
connectivity to the cloud to run heavy-weight processing.

To address this need, we present GENESYS, a HW-SW
prototype of a EA-based learning system, that comprises of
a closed loop learning engine called EvE and an inference
engine called ADAM. EvE can evolve the topology and weights
of neural networks completely in hardware for the task at
hand, without requiring hand-optimization or backpropogation
training. ADAM continuously interacts with the environment and
is optimized for efficiently running the irregular neural networks
generated by EvE. GENESYS identifies and leverages multiple
unique avenues of parallelism unique to EAs that we term “gene”-
level parallelism, and “population”-level parallelism. We ran
GENESYS with a suite of environments from OpenAI gym and
observed 2-5 orders of magnitude higher energy-efficiency over
state-of-the-art embedded and desktop CPU and GPU systems.

I. INTRODUCTION

Ever since modern computers were invented, the dream
of creating an intelligent entity has captivated humanity. We
are fortunate to live in an era when, thanks to deep learning,
computer programs have paralleled, or in some cases even
surpassed human level accuracy in tasks like visual perception
or speech synthesis. However, in reality, despite being equipped
with powerful algorithms and computers, we are still far away
from realizing general purpose AI.

The problem lies in the fact that the development of
supervised learning based solutions is mostly open loop
(Fig. 1(a)). A typical deep learning model is created by hand-
tuning the neural network (NN) topology by a team of experts
over multiple iterations, often by trial and error. The said
topology is then trained over gargantuan amounts of labeled
data, often in the order of petabytes, over weeks at a time on
high end computing clusters, to obtain a set of weights. The
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Fig. 1: Conceptual view of GENESYS within machine learning.
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Fig. 2: Example of NE in action, evolving NNs to play Mario.

trained model hence obtained is then deployed in the cloud or
at the edge over inference accelerators (such as GPUs, FPGAs,
or ASICs). Unfortunately, supervised learning as it operates
today breaks if one or more of the following occur:
(i) unavailability of structured labeled data
(ii) unknown NN topology for the problem
(iii) dynamically changing nature of the problem
(iv) unavailability of large computing clusters for training.

At the algorithmic-level, there has been promising work
on reinforcement learning (RL) algorithms, as one possible
solution to address the first three challenges. RL algorithms
follow the model shown in Fig. 1(b). An agent (or set of
agents) interacts with the environment by performing a set of
actions, which is determined by a policy function, often a NN,
which determines the action to be taken. These interactions
periodically generate a reward value, which is an measure of
effectiveness of the action for the given task. The algorithm uses
reward values obtained in each iteration to update the policy
function. This goes on till it converges upon the optimal policy.
There have been extremely promising demonstrations of RL [1],
[2] - the most famous being Google DeepMind’s supercomputer
autonomously learning how to play AlphaGo and beating the
human champion [1]. Unfortunately, RL algorithms cannot
address the fourth challenge, for the same reason that supervised
training algorithms cannot - they require backpropogation to
train the NN upon the receipt of each reward which is extremely
computation and memory heavy.
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Bringing general-purpose AI to autonomous edge devices
requires a co-design of the algorithm and architecture to
synergistically solve all four challenges listed above. This work
attempts to do that. We present GENESYS, a system targeted
towards energy-efficient acceleration of neuro-evolutionary
(NE) algorithms. NE algorithms are akin to RL algorithms,
but attempt to “evolve” the topology and weights of a NN via
genetic algorithms, as shown in Fig. 2. NEs show surprisingly
high robustness against the first 3 challenges mentioned earlier,
and have seen a resurgence over the past year through work by
OpenAI [3], Google Brain [4] and Uber AI Labs [5]. However,
these demonstrations have still relied on big compute and
memory (challenge #4), which we attempt to solve in this
work via clever HW-SW co-design. We make the following
contributions:
• We characterize a NE algorithm called NEAT [6], identify-

ing the compute and memory requirements across a suite
of environments from OpenAI gym [7].

• We identify opportunities for parallelism (population-level
parallelism or PLP and gene-level parallelism or GLP) and
data reuse (genome-level reuse or GLR) unique to NE
algorithms, providing architects with insights on designing
efficient systems for running such algorithms.

• We discuss the key attributes of compute and communica-
tion within NE algorithms that makes them inefficient to
run on GPUs and other DNN accelerators. We design two
novel accelerators, EVOLUTION ENGINE (EVE) and AC-
CELERATOR FOR DENSE ADDITION & MULTIPLICATION
(ADAM), optimized for running the learning and inference
of NE respectively in hardware, presenting architectural
trade-offs along the way. Fig. 1(b) shows an overview.

• We build a GENESYS SoC in 15nm, and evaluate it against
optimized NE implementations over latest embedded and
desktop CPUs and GPUs. We observe 2-5 orders of
magnitude improvement in runtime and energy-efficiency.

Just like optimized hardware ushered in the Deep Learning
revolution, we believe that GENESYS and subsequent follow
on work can enable mass deployment of intelligent devices at
the edge capable of learning autonomously.

II. BACKGROUND
Before we start with the description of our work, we would

like to give a brief introduction to some concepts which we
hope will help the reader to appreciate the following discussion.

A. Supervised Learning
Supervised learning is arguably the most widely used

learning method used at present. It involves creating a ‘policy
function” (e.g., a NN topology) (via a process of trial and error
by ML researchers) and then running it through tremendous
amounts of labelled data. The output of the model is computed
for a given set of inputs and compared against an existing label
to generate an error value. This error is then backpropogated [8]
(BP) via the NN to compute error gradients. These are
then passed through an optimization method called stochastic
gradient descent that tries to compute a new set of weights to

minimize the error. This is done iteratively till convergence is
achieved.

Supervised learning has the following limitations as the
learning/training engine for general purpose AI:

• Dependence on large structured & labeled datasets to
perform efficiently [9], [10]

• Effectiveness is heavily tied to the NN topology, as we
witnessed with deeper convolution topologies [11], [12]
that led to the birth of Deep Learning.

• Extreme compute and memory requirements [13], [14]. It
often takes weeks to train a deep network on a compute
cluster consisting of several high end GPUs.

B. Reinforcement Learning (RL)
Reinforcement learning is used when the structure of the

underlying policy function is not known. For instance, suppose
we have a a robot learning how to walk. The system has
a finite set of outputs (say which leg to move when and
in what direction), and the aim is to learn the right policy
function so that the robot moves closer to its target destination.
Starting with some random initialization, the agent performs a
set of actions, and receives an reward from the environment
for each of them, which is a metric for success or failure for
the given goal. The goal of the RL algorithm is to update
its policy such that future reward could be maximized. This
is done by iteratively perturbing the actions and computing
the corresponding update to the NN parameters via BP. RL
algorithms can learn in environments with scarce datasets and
without any assumption on the underlying NN topology, but the
reliance on BP makes them computationally very expensive.

C. Evolutionary Algorithms (EA)
Evolutionary algorithms get their name from biological

evolution, since at an abstract level they be seen as sampling
a population of individuals and allowing the successful in-
dividuals to determine the constitution of future generations.
Fig. 3(a) illustrates the flow. The algorithm starts with a pool
of individuals/agents, each one of which independently tries to
perform some action on the environment to solve the problem.
Each individual is then assigned a fitness value, depending
upon the effectiveness of the action(s) taken by them. Similar
to biological systems, each individual is called a genome, and
is represented by a list of parameters called genes that each
encode a particular characteristic of the individual. After the
fitness calculation is done for all, next generation of individuals
are created by crossing over and mutating the genomes of
the parents. This step is called reproduction and only a few
individuals, with highest fitness values are chosen to act as
parents in-order to ensure that only the fittest genes are passed
into the next generation. These steps are repeated multiple
times until some completion criteria is met.

Mathematically EAs can be viewed as a class of black-box
stochastic optimization techniques [3], [5]. The reason they
are “black-box” is because they do not make any assumptions
about the structure of the underlying function being optimized,
they can only evaluate it (like a lookup function). This leads
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to the fundamental difference between RL and EA. Both try to
optimize the expected reward, but RL perturbs the action space
and uses backpropagation (which is computation and memory
heavy) to compute parameter updates, while EA perturbs the
parameter space (e.g., nodes and connections inside a NN)
directly. The “black-box” property makes EAs highly robust -
the same algorithm can learn how to solve various problems
as from the algorithm’s perspective the task in hand remains
the same: perturb the parameters to maximize reward.

D. The NEAT Algorithm

TWEANNS are a class of EAs which evolve both the
topology and weights for given NN simultaneously. Neuro-
Evolution for Augmented Topologies (NEAT) is one of the
algorithms in this class developed by Stanley et al [6]. We use
NEAT to drive the system architecture of GENESYS in this
work, though it can be extended to work with other TWEANNs
as well. Fig. 3(b) depicts the steps and flow of the NEAT
algorithm, and Fig. 3(d) lists the terminology we will use
throughout this text.

Population. The population in NEAT is the set of NN
topologies in every generation that each run in the environment
to collect a fitness score.

Genes. The basic building block in NEAT is a gene, which
can represent either a NN node (i.e., neuron), or a connection
(i.e., synapse), as shown in Fig. 3(c). Each node gene can
uniquely be described by an id, the nature of activation (e.g.,
ReLU) and the bias associated with it. Each connection can
be described by its starting and end nodes, and its hyper-
parameters (such as weight, enable).

Genome. A collection of genes that uniquely describes one
NN in the population, as Fig. 3(c) highlights.

Initialization. NEAT starts with a initial population of very
simple topologies comprising only the input and the output
layer. It evolves into more complex and sophisticated topologies
using the mutation and crossover functions.

Mutation. Akin to biological operation, mutation is the
operation in which a child gene is generated by tweaking the
parameters of the parent gene. For instance, a connection gene
can be mutated by modifying the weight parameter of the
parent gene. Mutations can also involve addition or deletion
of genes, with a certain probability.

Crossover. Crossover is the name of the operation in which
a child gene for the next generation is created by cherry picking

parameters from two parent genes.
Speciation and Fitness Sharing. Evolutionary algorithms

in essence work by pitting the individuals against each other
in a given population and competitively selecting the fittest.
However, it is not difficult to see that this scheme can
prematurely prune individuals with useful topological features
just because the new feature has not been optimized yet
and hence did not contribute to the fitness. NEAT has two
interesting features to counteract that, called speciation and
fitness sharing. Speciation works by grouping a few individuals
within the population with a particular niche. Within a species,
the fitness of the younger individuals is artificially increased
so that they are not obliterated when pitted against older, fitter
individuals, thus ensuring that the new innovations are protected
for some generations and given enough time to optimize. Fitness
sharing is augmenting fitness of young genomes to keep them
competitive.

III. COMPUTATIONAL BEHAVIOR OF EAS

This section characterizes the computational behavior of
EAs, using NEAT as a case study, providing specific insights
relevant for computer architects.

A. Target Environments

We use a suite of environments described in Table I from
OpenAI gym [7]. Each of these environments involves a
learning task, which we ran through an open-source python
implementation of NEAT [15]. We choose a simple fitness
function that equals the score reported by the game.

B. Accuracy and Robustness
All experiments start with the same simple NN topology - a

set of input nodes (equal to the unique inputs in the application)
and a set of output nodes (equal to the unique set of outputs
that the NN needs to produce). These are fully-connected but
the weight on each connection is set to zero. We ran the same
codebase for different applications, changing only the fitness
function between these different runs. All environments reached
the target fitness - demonstrating the robustness of NEAT1.

1We also ran the same environments with open-source implementations of
A3C and DQN, two popular RL algorithms, and found that certain OpenAI
environments never converged, or required a lot of tuning of the RL parameters
for them to converge. However, a comprehensive comparison of RL vs. NE is
beyond the scope of this paper.
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Environment Goal Observation Action
Acrobot Balance a complex inverted pendulum constructed by linking two rigid rods Six floating point numbers One floating point number
Bipedal Evolve control for locomotion of a two legged robot on a simple terrain. Twenty four floating point

numbers.
Six floating point numbers.

Cartpole v0 The winning criteria is to balance an inverted pendulum on a moving platform
for 100 consecutive time steps.

Four floating point numbers. One binary value.

MountainCar The goal of this task is to control an underpowered car sitting in a valley such
that it reaches the finish point on the peak of one of the mountains.

Two floating point numbers. One integer, less than three,
for the direction of motion.

LunarLander The goal to control the landing of a module to a specific spot on the lunar
surface by controlling the fire sequence of its fours thrusters.

Eight floating point numbers. One integer, less than four, in-
dicating the thruster to fire.

Atari games The agent has to play Atari games by controlling button presses. We used
Airraid ram, Alien ram, Asterix ram and Amidar ram environments

128 bytes indicating the cur-
rent state of the game RAM.

One integer value, indicating
the button press.

TABLE I: Open AI Gym [7] environments for our experiments.
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Fig. 5: (a) Computation (i.e., Crossover and Mutations) Ops and (b) Memory Footprint of applications from OpenAI Gym in every generation.
A distribution is plotted across all generations till convergence and 100 separate runs of each application.

Fig. 4(a) demonstrates the evolution behavior of four of these
environments across multiple runs. We make two observations.
First, across environments, there can be variance in the average
number of generations it takes to converge. Second, even within
the same environment, some runs take longer than others to
converge, since the evolution process is probabilistic. For e.g.,
for Mountain Car, the target fitness could be realized as early as
generation # 8 to as late as generation # 160. These observations
point to the need for energy-efficient hardware to run NE
algorithms as their total runtime can vary depending on the
specific task they are trying to solve.

C. Compute Behavior and Parallelism

As shown in Fig. 3(a), EAs essentially comprise of an outer
loop running the evolutionary learning algorithm to create new
genomes (NNs) every generation, and inner loops performing
the inference for these genomes. Prior work has shown that
the computation demand of EAs drops by two-thirds compared
to backpropagation [3].

1) Learning (Evolution)

In NEAT, there are primarily two classes of computations that
occur - crossover and mutation, as shown in Fig. 3(b). Fig. 5(a)
show the distribution of the number of crossover and mutations
operations within a generation. The distribution is plotted across
all generations till the application converged and across 100
runs of each application. We observe that the mutations and
crossovers are in thousands in one class of applications, and
are in the range of hundred thousands in another class. A
key insight is that crossover and mutations of each gene can
occur in parallel. This demonstrates a class of raw parallelism
provided by EAs that prior work on accelerating EAs [3], [5]
has not leveraged. We term this as gene level parallelism
(GLP) in this work. Moreover, as the environments become
more complex with larger NNs with more genes, the amount
of GLP actually increases!

2) Inference
The inference step of NEAT involves running inference

through all NNs in the population, for the particular environ-
ment at hand. Inference in NEAT however is different than that
in traditional Multilevel Level Perceptron (MLP) NNs. Recall
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that NEAT starts with a simple topology Section III-B and then
adds new connection and nodes via mutation. This way of grow-
ing the network results in a irregular topology; or when viewed
from the lens of DNN inference - a highly sparse topology.
Inference on such topologies is basically processing an acyclic
directed graph. An interesting point to note is that, following
an evolution step, multiple genomes undergo the inference step
concurrently (Fig. 3(a)). As there is no dependence within the
genomes, a different opportunity of parallelism arises. We term
this as population level parallelism (PLP).

D. Memory Behavior
Fig. 4(b) plots the total number of genes as the NN evolves.

1) Memory Footprint.
It is important to note that the memory footprint for EAs at

any time is simply the space required to store all the genes of all
genomes within a generation. The algorithm does not need to
store any state from the previous generations (which effectively
gets passed on in the form of children) to perform the learning.
From a learning/training point of view, this makes EAs highly
attractive - they can have much lower memory footprint than BP,
which requires error gradients and datasets from past epochs
to be stored in order to run stochastic gradient descent. From
an inference point of view, however, the lack of regularity
and layer structure means that genomes cannot be encoded as
efficiently as convolutional neural networks today are. There
have been other NE algorithms such as HyperNEAT [16] which
provide a mechanism to encode the genomes more efficiently,
which can be leveraged if need be.

For all the applications in the Open AI gym we looked
at, the overall memory footprint per generation was less than
1MB, as Fig. 5(b) shows. While larger applications may have
larger memory footprints per generation, the total memory is
still expected to be much less than that required by training
algorithms due to the reasons mentioned above, enabling a lot
of the memory required by the EA to be cached on-chip.

2) Communication Bandwidth
Leveraging GLP and PLP requires streaming millions of

genes to compute units, increasing the memory bandwidth
pressure. Caching the necessary genes/genomes on-chip, and
leveraging a high-bandwidth network-on-chip (NoC) can help
provide this bandwidth, as we demonstrate via GENESYS.

3) Opportunity for Data Reuse
Data reuse is one of the key techniques used by most

accelerators [17]. Unlike DNN inference accelerators which
have regular layers like convolutions that directly expose reuse
across filter weights, the NN itself is expected to be highly
irregular in an evolutionary algorithm. However, we identify
a different kind of reuse: genome level reuse (GLR). In
every generation, the same fit parent is often used to generate
multiple children. We quantify this opportunity in Fig. 5(c).
For most applications, the fittest parent in every generation
was reused close to 20 times, and for some applications like
Cartpole and Lunar lander, this number increased up to 80. In
other words, one parent genome was used to generate 80 of

DQN EA
Compute 3M MAC ops in forward pass, 680K

gradient calculations in BP
115K MAC ops in inference, 135K
crossover + mutations in evolution

Memory 50 MB for replay memory of 100
entries, 4 MB for parameters and
activation given mini-batch size of 32

<1MB to fit entire generation

Parllelism MAC and gradient updates can paral-
lelized per layer

GLP and PLP as described in Sec-
tion III-C2 and Section III-C1

Regularity Dense CNN with high regularity and
opportunity of reuse

Highly sparse and irregular net-
works

TABLE II: Comparing DQN with EA

the 150 children required in the next generation, offering a
tremendous opportunity to read this genome only once from
memory and store it locally. This can save both energy and
memory bandwidth.

E. A case for acceleration
In this section we present the key takeaways from the

compute and memory analysis of EA. We also compare
compute-memory requirements of EA with conventional RL in
Table II with DQN [18] as a candidate, both running ATARI.

We notice that EA has both low memory and compute cost
when compared to DQN. Given the the reasonable memory
foot print (less than 1MB for the applications we looked at) and
GLR opportunity, it is evident that a sufficiently sized on chip
memory can help remove/reduce off-chip accesses significantly,
saving both energy and bandwidth. Also the compute operations
in EA (crossover and mutations) are simple and hardware
friendly. Furthermore, the absence of gradient calculation and
significant communication overheads facilitate scalability [3],
[5]. The inference phase of EAs is akin to graph processing or
sparse matrix multiplication, and not traditional dense GEMMs
like conventional DNNs, dictating the choice of the hardware
platform on which they should be run.

If we can reduce the energy consumption of the compute
ops by implementing them in hardware, pack a lot of compute
engines in a small form factor, and store all the genomes
on-chip, complex behaviors can be evolved even in mobile
autonomous agents. This is what we seek to do with GENESYS,
which we present next.

IV. GENESYS: SYSTEM AND MICROARCHITECTURE
A. System overview

GENESYS is a SoC for running evolutionary algorithms in
hardware. This is the first system, to the best of our knowledge,
to perform evolutionary learning and inference on the same
chip. Fig. 6 present an overview of our design. There are four
main components on the SoC:

• Learning Engine (EvE): EvE is the accelerator proposed in
this work. It is responsible for carrying out the selection and
reproduction part of the NEAT algorithm parts of the NEAT
algorithm across all genomes of the population. It consists
of a collection of processing elements (PEs), designed for
power efficient implementation of crossover and mutation
operations. Along with the PEs, there is a gene split unit to
split the parent genome into individual genes, an on-chip
interconnect to send parent genes to the PEs and collect
child genes, and a gene merge unit to merge the child genes
into a full genome.
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• Inference Engine (ADAM): We observed in Section III-C2,
the neural nets generated by NEAT are highly irregular in
nature. This irregularity deems traditional DNN accelerators
unfit for inference in this case, as they are optimized with
the assumption that the topology is a dense cascades of
layers. In our case inference is closer to graph processing
than DNN inference, which is essentially a sequence of
multiple vertex updates for the nodes in the NN graph.
ADAM consists of a systolic array of MAC units to
perform parallel vertex evaluations, and a vectorize routine
in System CPU to pack nodes into well formed input
vectors for dense matrix-vector multiplication. Similar to
input vector creation, the vectorize routine also generates
weight matrices for genomes, every time a new generation
is spawned. However, as the weight matrices do not change
within a given generation, and are reused for multiple
inferences, while every new vertex evaluation requires a
new input vector.

• System CPU (ARM Cortex M0 CPU): We use an embedded
Cortex M0 CPU to perform the configuration steps of
the NEAT algorithm (setting the various probabilities,
population size, fitness equation, and so on), and manage
data conversion and movement between EvE, ADAM and
the on-chip SRAM.

• Genome Buffer (SRAM): We use a shared multi-banked
SRAM that harbors all the genomes for a given generation
and is accessed by both ADAM and EvE. This is backed
by DRAM for cases when the genomes do not fit on-chip.

B. Walkthrough Example
We present a brief walk-through of the execution sequence in

the system with the help of Fig. 6 to demonstrate the dataflow
through the system. Our system starts with a population of
genomes of generation n in memory. Through the set of steps

described, next, GENESYS evolves the genomes for the next
generation n + 1.

• Step 1: The genomes (i.e., NNs) are read from the genome
buffer SRAM and mapped over the MAC units in ADAM.

• Step 2: ADAM reads the state of the environment. In our
evaluations, the environment is one of the OpenAI gym
games (Table I).

• Step 3: Inference is performed by multiple vertex update
operations. Several vertices are simultaneously updated by
packing input vertices into a well formed vector in the
CPU, followed by matrix-vector multiplication on systolic
array. Inference for a given genome is marked as complete
once the output vertices are updated.

• Step 4: The output activations from step 3 are translated
as actions and fed back to the environment.

• Step 5: Steps 2-4 are repeated multiple times until a
completion criteria is met. For the OpenAI runs, this was
either a success or failure in the task at hand. Following this
a cumulative reward value is obtained from the environment
- a proxy for performance of the NN.
• Step 6: The reward value is then translated into a fitness

value by the CPU thread. The reward depends upon the
application/environment. The fitness value is augmented to
the genome that was just run in SRAM.

• Step 7: Once the fitness values for all individuals in
the population are obtained, reproduction for the next
generation can now start. In NEAT, only individuals above
a certain fitness threshold area are allowed to participate in
reproduction. A selector logic running on the CPU takes
these factors into account and selects the individuals to act
as parents in the next generation.
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• Step 8: The selected parent genomes are read by EvE. The
gene splitting logic curates genes from different parents
that will produce the child genome, aligns them, and stream
them to the PEs in EvE.

• Step 9: The PEs receive the parent genes from the
interconnect, perform crossovers and mutations to produce
the child genes, and send these genes back to interconnect.

• Step 10: The gene merge logic organizes the child genes
and produces the entire genome. Then this genome is
written back into the genome buffer, overwriting the
genomes from the previous generation. As each child
genome becomes ready, it can be launched over ADAM
once again, repeating the whole process.

The system stops when the CPU detects that the target
fitness for that application has been achieved. Steps 1 to 6 can
leverage PLP, while steps 8 to 10 can leverage GLP. Step 7
(fittest parent selection) is the only serial step.

C. Microarchitecture of EVE

1) Gene Level Parallelism (GLP)

We leverage parallelism within the evolutionary part - namely
at the gene level. As discussed earlier, the operations in an
EA can broadly be categorized in two classes: crossover and
mutation. In NEAT, there are three kinds of mutations (per-
turbations, additions and deletions). These four operations are
described in Fig. 3(d). While these four operations themselves
are serial, they do not have any dependence with other genes.
Moreover, the high operation counts per generation (Fig. 5(a))
indicates massive GLP which we exploit in our proposed
microarchitecture.

2) Gene Encoding

Fig. 6 shows the structure for a gene we use in our design.
NEAT uses two types of genes to construct a genome, a node
gene which describe vertices and the connection gene which
describe the edges in the neural network graph. We use 64 bits
to capture both types of genes. Node genes have four attributes
- {Bias, Response, Activation, Aggregation} [6]. Connection
genes have two attributes - source and destination node ids.

3) Processing Element (PE)

Fig. 6 shows the schematic of the EvE PE. It has a four-
stage pipeline. These stages are shown in Fig. 7. Perturbation,
Delete Gene and Add Gene are three kinds of mutations that
our design supports.

Crossover Engine. The crossover engine receives two genes,
one from each parent genome. As described in Section II-D,
crossover requires picking different attributes from the parent
genome to construct the child genome. The random number
from the PRNG is compared against a bias and used to select
one of the parents for each of the attributes. We provide the
ability to program the bias, depending on which of the two
parents contributes more attributes (i.e., is preffered) to the
child. The default is 0.5. This logic is replicated for each of
the 4 attributes.

Perturbation Engine. A perturbation probability is used to
generate a set of mutated values for each of the attributes in
the child gene that was generated by the crossover engine.

Delete Gene Engine. There are two types of genes in a
given genome - node and connection - and implementing gene
deletion for each of them differs. A gene is deleted depending
on the deletion probability, and compared against a PRNG.
However, gene deletion is slightly more complicated since
a node gene that has been deleted could leave an already
created connection gene floating. Gene deletion for node and
connection genes is handled in the following way. For a node
gene, two things are checked, the deletion probability and
number of nodes deleted in the genome. If the number of
nodes deleted is more than a certain threshold, the gene is
not deleted. This is required in some EAs, such as NEAT,
to ensure a minimum number of nodes in the NN. In case
the logic decides to delete the gene, its node ID is saved in
the deleted nodes list, and a counter representing number of
nodes deleted is incremented by one. For connection genes,
the source and destination nodes are checked against the list
of deleted nodes to figure out if the connection is floating or
not. If it is found to be floating, it is deleted as well.

Add Gene Engine. This is the fourth and final stage of the
PE pipeline. As in the case of the previous stage, depending
upon the type of the gene, the implementation varies. To
add a new node gene, the logic inserts a new gene with
default attributes and a node ID greater than any other node
present in the network. Additionally two new connection genes
are generated and the incoming connection gene is dropped.
The addition of a new connection gene is carried out in two
cycles. When a new connection gene arrives, the selection logic
compares a random number with the addition probability. If the
random number is higher, then the source of the incoming gene
is stored. When the next connection gene arrives, the logic
reads the destination for that gene, appends the stored source
value and default attributes, and creates a new connection gene.
This mechanism ensures that any new connection gene that is
added by this stage always has valid source and destinations.

4) Gene Movement

Next, we describe the blocks that manage gene movement.
Gene Selector. As we discussed in Section II-D, only a

few individuals in a given population get the opportunity to
contribute towards the reproduction of the next generation. In
very simple terms, selection is performed by determining a
fitness threshold and then eliminating the individuals below the
threshold. In Section II-D we have seen that NEAT provides a
mechanism to keep new features in the population by speciation
and fitness sharing. The selection logic in our design works in
three steps. First, the fitness values of the individuals in the
present generation and read and adjusted to implement fitness
sharing. Next, the threshold is calculated using the adjusted
fitness values. Finally the parents for the next generation are
chosen and the list of parents for the children is forwarded to
the gene splitting logic. This is handled by a software thread
on the CPU, as shown in Fig. 6.
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Fig. 7: Schematic depicting the various modules of the Eve PE.

Gene Split.. The Gene Split block orchestrates the movement
of genes from the Genome Buffer to the PEs inside EvE. In
the crossover stage, the keys (i.e., node id) for both the parent
genes need to be the same. However both the parents need not
have the same set of genes or there might be a misalignment
between the genes with the same key among the participating
parents. The gene split block therefore sits between the PEs and
the Genome Buffer to ensure that the alignment is maintained
and proper gene pairs are sent to the PEs every cycle.

In addition, this block receives the list of children and their
parents from the Gene Selector and takes care of assigning the
PEs to generate the child genome. We describe the assignment
policy and benefits in Section IV-C5.

Gene Merge. Once a child gene is generated, it is written
back to the Gene Memory as part of the larger genome it is
part of. This is handled by the Gene Merge block.

Pseudo Random Number Generators (PRNG). The
PRNG feeds a 8-bit random numbers every cycle to all the
PEs, as shown in Fig. 6. We use the XOR-WOW algorithm,
also used within NVIDIA GPUs, to implement our PRNG.

Network-on-Chip (NoC) A NoC manages the distribution
of parent genes from the Gene Split to the PEs and collection of
child genes at the Gene Merge. We explored two design options
for this network. Our base design is separate high-bandwidth
buses, one for the distribution and one for the collection
However, recall that the NEAT algorithm offers opportunity
for reuse of parent genomes across multiple children, as we
showed in Section III-D3. Thus we also consider a tree-based
network with multicast support and evaluate the savings in
SRAM reads in Section VI.

5) Integration
In this section we will briefly describe how the different

components are tied together to build the complete system.
Genome organization. As described in earlier sections, we

have two types of genes, nodes and connection. As shown in
Fig. 6 each gene can be uniquely identified by the gene IDs.
In this implementation we identify node genes with positive
integers, and the connection genes by a pair of node IDs
representing the source and the destination. Within a genome,
the genes are stored in two logical clusters, one for each type.
Within each cluster, the genes are stored by sorting them in
ascending order of IDs. Ensuring this organization eases up the

implementation of the Add Gene engine. During reproduction,
since the child gene gets the key of the parent genes, which in
turn are streamed in order, ordering is maintained. For newly
added genes, the Gene Merge logic ensures that they sequenced
in the right order when put together in memory.

EvE Dataflow. After the Gene Selector finalizes the parents
and their respective children, the list is passed to the Gene Split
block. The Gene Split logic then allocates PEs for generation
of the children. In this implementation we allocate only one
PE per child genome2. The PE allocation is done with a greedy
policy, such that maximum number of children can be created
from the parents currently in the SRAM. This is done to exploit
the reuse opportunity provided by the reproduction algorithm
and minimize SRAM reads.

When streaming into the PE, the node genes are streamed
first. This is done in order to keep track of the valid node IDs in
the genome, which will then be used in the gene addition and
deletion mutations. Information about valid nodes are required
to prune out dangling connections and assignment of node IDs
in case of a new node or connection addition. Once the nodes
are streamed, connection genes are streamed until the complete
genome of the child is created. Before the genes are streamed,
it takes 2 cycles to load the parents’ fitness values and other
control information.

D. Microarchitecture of ADAM
As mentioned in Section IV-A, ADAM evaluates NNs

generated by EVE by processing vertices in the irregular
NN graph. We had two design choices - either go with a
conventional graph accelerator like Graphicionado [19], or
pack the irregular NN into dense matrix-vector multiplications.
Recall that EAs have a small memory requirement (unlike
conventional graph workloads) and do not require caching
optimizations. Moreover, given that our workloads are neural
networks, vertex operations are nothing but multiply and
accumulate. We thus decided to go with the latter approach.
ADAM performs multiple vertex updates concurrently, by
posing the individual vector-vector multiplications into a packed
matrix-vector multiplication problem. Systolic array of Multiply
and Accumulate (MAC) elements is a well known structure

2It is possible to spread the genome across multiple PEs as well but might
lead to different genes of a genome arriving out-of-order at the Gene Merge
block complicating its implementation.
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for energy efficient matrix-vector multiplication in hardware,
and is essentially the heart of ADAM’s microarchitecture.

However, picking the ready node values to create input
vectors for packed matrix-vector multiplication is a task with
heavy serialization. We use the System CPU to generate
required vectors from the node genomes. As both systolic
arrays and graph processing are heavily investigated techniques
in literature [20], [21], [19], [22], [23], [24], we omit details
of implementation for the sake of brevity.

V. IMPLEMENTATION
We implemented the GENESYS SoC using Nangate 15nm

FreePDK. We implement a 32× 32 systolic-array of MAC
units for ADAM and measure the post synthesis power and
area numbers. EvE PEs are synthesized and the area and power
numbers are recorded similar to ADAM, as shown in Fig. 8(a).
For the on-chip SRAM we chose 20 banks each to exploit
the reuse of parents observed in Section III-D3. We chose a
depth of 64 words in each bank, so that off chip accesses can
be minimized. We will discuss the relationship in detail in
later sections. We also take into account the area and power
contributed by the interconnect and the cortex M0 processor
core. With the post synthesis numbers and the relationship of
SRAM size and number of PEs, we generate the area footprint
and power consumption estimates for design points with varying
number of PE Fig. 8(b-c) depict the numbers.

The choice of design point for EvE and ADAM are motivated
by accelerators published in the academia in the recent past
[25], [26], [27], [28]. We choose a power budget of 250 mW
at a frequency of 200MHz, which is typical of the published
neural network accelerators. Fig. 8(b) shows that we max out
on power with 256 PEs. Referring back to Fig. 8(c), we see
that a design with 256 EvE PEs demand about 1.1mm2 in area.
We list all the parameters of EvE for this design point in a
table in Fig. 8(a).

VI. EVALUATION
A. Methodology

We study the energy, runtime and memory footprint metrics
for GENESYS and compare these with the corresponding
metrics in embedded and desktop class CPU and GPU platform.
For our study we use NEAT python code base [15], and modify
the evolution and inference modules as per our needs. We
modify the code to optimize for runtime and energy efficiency
on GPU and CPU platforms by exploiting parallelism and to

generate a trace of reproduction operations for the various
workloads presented in Table I.

CPU evaluations. We measure the completion time and
power measurements on two classes of CPU, desktop and
embedded. The desktop CPU is a 6th generation intel i7, while
the embedded CPU is the ARM Cortex A57 housed on Jetson
TX2 board. On desktop, power measurements are performed
using Intel’s power gadget tool while on the Jetson board
we use the onboard instrumentation amplifier INA3221. We
capture the average runtime for evolution and inference from
the codebase, and use it to calculate energy consumption.

GPU evaluations. We augment the evolution and inference
modules in NEAT python with kernel code written in PyCUDA
to map GLP and PLP onto the BSP execution model offered
by GPU, to make the code as efficient as possible. Similar
to CPU measurements, we use desktop (nVidia GTX 1080)
and embedded (nVidia Tegra on Jetson TX2) GPU nodes. For
the desktop GPU, power is measured using nvidia-smi utility
while same onboard INA3221 is used for measuring gpu rail
power on TX2. Runtime is captured using nvprof utility for
kernels and data-transfers, and are used in energy calculations.
To ensure that the correctness of the operations are maintained,
we apply some constraints in ordering, for example crossovers
precede mutation in time.

GENESYS evaluations. The traces along with the parameters
obtained by our analysis in Section V are used to estimate the
energy consumption for our chosen design point of EvE. Each
line on the trace captures the generation, the child gene and
genome id, the type of operation - mutation or crossover, and
the parameters changed or added or deleted by the operations.
These traces serve as proxy for our workloads when we evaluate
EVE and ADAM implementations.

B. Runtime

Fig. 9(a) and (c) shows the runtime of different OpenAI
gym environments on various platforms for both evolution and
inference. In CPU, evolution happens sequentially while we try
to exploit PLP in inference by using multithreading, running 4
concurrent threads (CPU b and CPU d). Parallel inference on
CPU is 3.5 times faster than the serial counterpart.

We try to exploit maximum parallelism in GPU by mapping
PLP and GLP to BSP paradigm in inference in two different
implementations. Genesys outperforms the best GPU imple-
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Fig. 9: Runtime and Energy for OpenAI gym environments across CPU, GPU and GeneSys. (a) Runtime of Inference, (b) Runtime of
Evolution, (c) Energy of Inference, (d) Energy of Evolution

Fig. 10: Breakdown of runtime into memory copy and execution
steps across platforms.

Fig. 11: (a) On-device memory allocation for inference in GPU
implementations and Genesys. (b) Distribution of node and
connection genes

mentation by 100x in inference. Next, we describe our GPU
implementations and discuss our observations.

GPU deep dive. GPU a exploits GLP by forming com-
paction on input vectors serially and evaluating multiple vertices
in parallel for each genome. In GPU b, multiple vertices across
genomes are evaluated in parallel thus exploiting both GLP
and PLP. However the inputs and weights could no longer
compacted resulting in large sparse tensors. Fig. 10 depicts the
contribution of memory transfer in total runtime. We observed
memory transfers take 70% of runtime in GPU a while GPU b
takes to 20% of total runtime for memory transfer. GENESYS
in comparison also take about 15% for memory transfers;
however since all the data is on chip, the actual runtime is
1000x smaller. Fig. 11(a) and (b) depicts the overall on-chip
memory requirement in the GPU a, GPU b and GENESYS.
We see that GPU b has a much higher footprint as all sparse
weight and input matrices are kept around, while for GPU a
only compact matrices for one genome is required at a time.
GENESYS stores entire population in memory, thus we see
100x more footprint than GPU a, which is expected as we have
a population size of 150. However GENESYS has 100x less
footprint that GPU b as GPU b has to store sparse matrices.
Fig. 11(c) shows the distribution of connections and nodes

Legend Inference Evolution Platform
CPU a Serial Serial 6th gen i7
CPU b PLP Serial 6th gen i7
GPU a BSP PLP Nvidia GTX 1080
GPU b BSP + PLP PLP Nvidia GTX 1080
CPU c Serial Serial ARM Cortex A57
CPU d PLP Serial ARM Cortex A57
GPU c BSP PLP Nvidia Tegra
GPU d BSP + PLP PLP Nvidia Tegra
GENESYS PLP PLP + GLP GENESYS

PLP (GLP) - Population (Gene) Level Parallelism
BSP - Bulk Synchronous Parallelism (GPU)

TABLE III: Target System Configurations.

in various workloads. Since connections genes dominate, this
translates to larger weight matrices during inference, which .

C. Energy consumption

Fig. 9(b) and (d) shows the energy consumption per genera-
tions for OpenAI gym workloads on different platforms. For
inference ADAM contributes to 100x more energy efficiency,
while EVE turns out to be 4 to 5 orders of magnitude more
efficient than GPU c which is the most energy efficient among
out platforms.

D. Design choices: PEs, SRAMs and Interconnect:
As the place and route diagram shows in Fig. 8(a) GeneSys

is a single design with multiple ADAM PEs for inference and
EvE for evolution. Data communication within the system is
carried out using the on chip SRAM. Any data that does not
fit into the SRAM needs to be fetched from DRAM. In a given
chip area, adding more PEs (compute) vs SRAM (memory) is
a key trade-off decision for any accelerator. We find that EVE
is exceptionally sensitive to this decision, because the memory
footprint of a particular generation can potentially fit in on-chip
SRAM as we demonstrated in Section III-D1. This in turn has
implications on the number of off-chip DRAM transactions,
which can become a performance and power bottleneck.

PE vs SRAM. In Fig. 12(a) we explore how this design
choice impacts DRAM reads and performance. In this analysis
we assume that across all the design points the area is fixed
to 1mm2. Recall that each SRAM bank in our design houses
genes for a given parent. If the depth of the SRAM bank
is not enough to house the entire genome, then the SRAM
acts as a FIFO buffer for data coming from DRAM. For a
streaming data pattern like ours, this means the same number of
DRAM reads irrespective of the depth, unless some intelligent
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data flow is implemented. Increasing SRAM depth with same
number of SRAM banks means trading off some PEs as the
area is fixed. This leads to drop in throughput albeit power
consumption goes down as well. If the number of PEs drop
to certain number, the number of parents required also drops,
encouraging some area recovery by removing unused SRAM
for PEs. For Fig. 12(a) we did this back and forth parameter
tweaking for Airraid ram which is a large workload with 775
genes in a genome. We notice two trends: the DRAM reads
drop to zero once we have a 152kB SRAM, but the throughput
also drops. This is because the number of PEs drops below
the population size. Thus if we are power-constrained, a large
SRAM is a better design choice to fit all genomes on-chip, but
we lose the GLP since the number of PEs goes down.

SRAM Depth vs Banks Next, we keep the SRAM constant
at 16kB, and have 205 PEs. We now vary the number of SRAM
banks versus the depth of each bank. Fig. 12(b) plots the results.
Recall that each bank stories a unique parent genome, and its
genes are stored along the depth. Less banks mean less parents,
which in turn means less children can be generated at any given
instance. This means, even though enough PEs are available
on-chip to process all genomes in parallel, only a few of them
can actually be used, and thus we see a drop in throughput.
This result also indicates that if we could only have few banks
(due to challenges with creating a multi-ported SRAM) and
more depth in each, it might make sense to distribute genes
from one parent across the PEs spatially to increase utilization.

Impact of Network-on-Chip Neural network accelerators
often take advantage of the reuse in data flow to reduce SRAM
reads and hence lower the energy consumption. The idea is
that, if same data is used in multiple PEs, there is a natural win
by reading the data once and multicasting to the consumers.
In our case, we see reuse in the parents while producing
multiple children of a single parent. Therefore we can use
similar methods to reduce reads as well. Fig. 12(c) shows the
number of SRAM reads with a simple bus versus a multicast
tree network. We observe more than a 100× reduction in SRAM
reads when supporting multicasts in the network, motivating
an intelligent interconnect design. An intelligent interconnect
can also help support multiple mapping strategies of genes
across the PEs, and is an interesting topic for future research.

VII. DISCUSSION AND RELATED WORK
Future Directions. It is important to note that the success

of evolutionary algorithms is tied to the nature of application.
From a very high level what EA does, is search for optimal
parameters guided by the fitness function and reward value.
Naturally, as the parameter space for a problem becomes
large, the convergence time of EAs increase as well. In
such a scenario, we believe that GENESYS can be run in
conjunction with supervised learning, with the former enabling
rapid topology exploration and then using conventional training
to tune the weights. Neuro-evolution to generate deep neural
networks [29], [30], [31], [4], [32], [33] falls in this category.
The only thing that would change is the definition of gene.

Neuro-evolution. Research on EAs has been ongoing for
several decades. [34], [35], [36], [37] are some examples
of early works in using evolutionary techniques for topology
generations. Apart from NEAT [6], other algorithms like
Hyper-NEAT and CPPN [16], [38] for evolution of NNs have
also been reported in the last decade [39], [40], [41].

Online Learning. Traditional reinforcement learning meth-
ods have also gained traction in the last year with Google
announcing AutoML [42], [43], [44]. In situ learning from
the environment has also been approached from the direction
of spiking neural nets (SNN) [45], [46], [47]. Recently intel
released a SNN based online learning chip Loihi [48]. IBM’s
TrueNorth is also a SNN chip. SNNs have however not managed
to demonstrate accuracy across complex learning tasks.

DNN Acceleration. Hardware acceleration of neural net-
works is a hot research topic with a lot of architecture choices
[49], [50], [51], [52], [17], [53], [54], [55], [56] and silicon
implementations [25], [26], [27], [28]. These accelerators can
replace ADAM for inference, when genes are used to represent
layers in MLPs as discussed above. However, EVE remains
non-replaceable as there is no hardware platform for efficient
evolution in the present to the best of our knowledge.

VIII. CONCLUSION
This work presents GENESYS, a system to perform automat-

ing NN topology and weight generation completely in hardware.
We first characterize a NE algorithm called NEAT, and identify
massive opportunities for parallelism. Exploiting this, we design
two accelerators, EvE and ADAM to accelerate the learning
and inference components of NEAT in hardware. We also
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perform optimized CPU and GPU implementations and find
that they suffer from high power consumption (as expected)
and low performance due to extensive memory copies. We
believe that this work takes a first key step in co-optimizing
NE algorithms and hardware, and opens up lots of exciting
avenues for future research.
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