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ABSTRACT
Applications across image processing, speech recognition, and clas-
sification heavily rely on neural network-based algorithms that
have demonstrated highly promising results in accuracy. However,
such algorithms involve massive computations that are not man-
ageable in general purpose processors. To cope with this challenge,
spatial architecture-based accelerators, which consist of an array
of hundreds of processing elements (PEs), have emerged. These
accelerators achieve high throughput exploiting massive parallel
computations over the PEs; however, most of them do not focus on
on-chip data movement overhead, which increases with the degree
of computational parallelism, and employ primitive networks-on-
chip (NoC) such as buses, crossbars, and meshes. Such NoCs work
for general purpose multicores, but lack scalability in area, power,
latency, and throughput to use inside accelerators, as this work
demonstrates. To this end, we propose a novel NoC generator that
generates a network tailored for the traffic flows within a neural
network, namely scatters, gathers and local communication, fa-
cilitating accelerator design. We build our NoC using an array of
extremely lightweight microswitches that are energy- and area-
efficient compared to traditional on-chip routers. We demonstrate
the performance, area, and energy of our micro-switch based net-
works for convolutional neural network accelerators.
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1 INTRODUCTION
Neural network (NN) based algorithms, such as deep convolutional
neural networks (CNN), have shown tremendous promise over the
past few years in performing object detection, recognition, and
classification across state-of-the-art benchmark suites [7, 15] at ac-
curacies surpassing those of humans. Modern CNNs [14, 23] have
tens of layers and millions of parameters. This adds tremendous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NOCS ’17, October 19–20, 2017, Seoul, Republic of Korea
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4984-0/17/10. . . $15.00
https://doi.org/10.1145/3130218.3130230

…

… Global 
Buffer NoC

PE

PE

PE

PE

PE

PE
PE

PE

PE

Figure 1:Architecture of a neural network accelerator.We generate
the NoC between the global buffer and the PEs using novel latency,
area, and energy-efficient microswitches.

throughput and energy-efficiency challenges on the hardware sub-
strate to efficiently load these parameters on-chip and perform
millions of computations (multiply-accumulate). CPUs are unable
to provide such parallelism, while GPUs can provide high paral-
lelism and throughput but consume massive amounts of energy
due to the frequent memory accesses.

There has been flurry of research in the computer architecture
domain for designing custom hardware accelerators for providing
real-time processing of deep neural networks at stringent energy
budgets. Most of these accelerators are spatial in nature, i.e., an
array of interconnected processing elements (PEs) is used to provide
parallelism [1, 3–5, 16]. The internal dataflow between the PEs
is optimized to reuse parameters (input activations, weights, or
output activations) that are shared by multiple neurons [3]. This
reduces the number of memory accesses, thereby providing energy-
efficiency. The PEs are fed new parameters from an on-chip global
buffer, as shown in Fig. 1.

The microarchitecture of the PE (only compute, or compute with
some local storage), and the nature of the dataflow between the
PEs/global buffer to PEs is an area of active research currently and
multiple alternate implementations have been demonstrated [1, 3–
5, 16]. However, there has been little research on the architecture
or implementation of the network-on-chip (NoC) interconnecting
the PEs to each other and to the global buffer.

In a spatial NN accelerator, the NoC (Fig. 1) plays a key role, more
so than in multi-cores, in realizing high-throughput. This is because
most spatial accelerators operate in a dataflow style: a PE operation
is triggered by data arrival, and the PE stalls if the next data to be
processed is unavailable due to memory or NoC delay. Almost all
NN accelerators have used specialized buses [3], or mesh-based
NoCs [1, 4, 8], or crossbars [1], without a clear trade-off study on
why one was picked over the other.
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This work provides a comprehensive analysis of the NoC within
an array of spatial PEs that are accelerating a CNN. We first char-
acterize traffic inside typical CNN accelerator implementations,
in detail. We demonstrate that interconnecting tens of processing
cores on a CMP or SoC is very different from interconnecting hun-
dreds of tiny PEs from both a performance (latency and throughput)
and cost (area and power) perspective. We also argue that the NoC
cannot be completely custom and static, such as those in application
specific embedded systems, since the traffic patterns vary based
on the actual neural network being mapped. We conclude that the
conventional NoCs (bus/crossbar/mesh/custom-trees) used in CMP-
s/SoCs today are not appropriate choices as they either limit the
achievable throughput from the PE array, or add significant area
and power penalties, proportional to that of the PEs themselves.

We propose a new NoC design paradigm for NN accelerators
using an array of reconfigurable micro-switches. The micro-switch
array can be configured cycle by cycle to provide dedicated paths for
three kinds of traffic that occurs in all CNN implementations: scat-
ter (buffer to PE array - either via unicast, multicast or broadcast),
local (PE to PE), and gather (PE array to buffer). We achieve three
simultaneous goals: extremely low-area, energy-efficiency, and per-
formance. The micro-switch array increases the performance of
CNN implementations by 49% on average, compared to traditional
(bus, tree, mesh, crossbar, hierarchical) NoCs. More importantly, it
reduces average area and power by 48% and 39% respectively. In
the same area, micro-switches can house 2.32X PEs than a mesh.

The rest of the paper is organized as follows. Section 2 provides
relevant background on NN accelerator dataflows. Section 3 mo-
tivates this work by analyzing traffic flows across NN accelerator
implementations. Section 4 demonstrates our micro-switch array
topology and microarchitecture. Section 5 presents evaluation re-
sults. Section 6 describes related work and Section 7 concludes.

2 BACKGROUND
Neural networks are a rich class of algorithms that can be trained
to model the behavior of complex mathematical functions. The
structure of neural networks is modeled after the human brain with
a large collection of “neurons" connected together with “synapses".
In machine learning, a deep neural network (DNN) is built using
multiple layers of neurons, each layer essentially acting as a feature
extractor, with the final layer performing classification.

2.1 Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN) are a class of DNNs that are
used widely for image processing. Each convolution layer receives
inputs in the form of a raw image or input feature maps (the output
of a previous convolution layer) and convolves it with a filter to
produce an output feature map, as Fig. 2 illustrates.

2.2 Dataflows in CNN Accelerators
There has been a surge in accelerators for CNN over the past few
years [4–6, 8]. The dataflow graph for CNN computations can
be mapped onto a PE array in multiple ways leading to different
dataflow characteristics. We follow the taxonomy introduced in
Eyeriss [6] that classifies CNN accelerator implementations into
the following categories.
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Figure 2: Convolution operation performed by a CNN accelerator.
Input activations convolves with filter weights in respective chan-
nel. The accelerator accumulates bias values and partial sums gen-
erated from different channels to obtain output activations. The ac-
celerator repeats such calculations over entire input activation by
sliding the filter by stride value until it generates all the output ac-
tivations.

• Weight Stationary (WS): In a WS accelerator, each PE fetches a
unique weight element from the global buffer (GB) and retains
it until the PE completes all calculations involving that weight.
GB transfers input activations via a broadcast toward each PE.
PEs may forward psums back to the GB (to be redistributed
later), or accumulate them locally within the array.
• Output Stationary (OS): An OS accelerator maps one output
pixel on to one PE in every iteration. Each PE fetches both
weights and input activations from global buffer and internally
accumulates partial sums. When the accumulation completes,
or output activations are generated, each PE sends the output
activation to the global buffer.
• Row Stationary (RS): A RS accelerator [6] maps a row of partial

sum calculations on a column of the PE array, which facilitates
data reuse of weight and input activations. Partial sums are
accumulated by forwarding locally along the column, and the
PEs at the top of the column send the final output activations
to the global buffer.

The dataflows in CNN accelerators remain fairly uniform within
each layer to maintain uniform utilization across all PEs.

3 MOTIVATION
3.1 Traffic inside Neural Network Accelerators
Given the highly parallel nature of the computation, most neural
network accelerators - CNN [6, 8], RNN [10], SNN [1], - employ
a multitude of compute units, which we refer to as processing
elements (PE)s. Each PE contains some scratch pad memory and
the compute logic. In addition to PEs there is also a larger on chip
memory present in the accelerator, which we will refer to as the
global buffer (GB). We assume the PE to be the most primitive
building block of the accelerator - managing computation for one
partial sum, a primitive output in CNNs.

We identify that there are primarily three kinds of traffic flows
in spatial accelerators:
• Scatter: Scatter is data distribution from the GB to the PE array.
Scatters can either be unicast or multicast, depending on the
dataflow and the mapping of compute on PEs.
• Gather: Gather is the traffic flow which occurs when multiple

PEs send data to the GB at a given interval of time. Gather can
either occur at the end of the computation, or in the middle of
the computation due to insufficient number of PEs.
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Figure 3: (a) Compute (Multiplications and Additions) vs. Communication (Scatter/Gather/Local) of each Alexnet layer [14] across different
CNN implementations: weight stationary (WS), row stationary (RS), and output stationary (OS). (b) Average NoC bandwidth requirement for
Alexnet vs. number of PEs
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Figure 4: Challenges with traditional NoCs for accelerators. (a) Latency of 64-PE WS CNN accelerator with increasing PE delay (b) Area, and
(c) Power

• Local: Local refers to the inter-PE communication traffic. It
could be in the form of unicasts, multicasts or reductions.
Fig. 3 (a) plots the total number of computations and commu-

nication flows (scatter/gather/local) within the convolution layers
of AlexNet [14] for the accelerator implementations described in
Section 2.2. It shows raw compute to communication ratio across
typical CNN dataflows, and demonstrates that communication is
critical in spatial CNN accelerators to get full throughput. The oper-
ation of most of such accelerators occurs in a dataflow style; a delay
in communication would essentially lead to a stall. Because PEs
are tiny compute units, they are incapable of exploiting ILP/TLP
mechanisms for hiding delays, unlike conventional CPUs or GPUs.

Fig. 3 (b) translates the raw communication into a bandwidth
requirement as a function of the number of PEs. We simulate WS,
OS and RS implementations and estimate the average traffic require-
ments across all the convolution layers of AlexNet. For all designs,
scatter bandwidth (unicast for WS and OS, multicasts for RS) is
extremely crucial. For WS architectures, the bandwidth required
by gathers is significant. As the number of PEs increases, so does
the bandwidth across all traffic flows.

The traffic analysis demonstrates that compute is highly de-
pendent on communication in CNN accelerators. They require an
interconnect to support frequent scatters, local traffic, and gathers,
to multiplex many neurons across finite PEs. A neural accelerator
designer would decide the number of PEs (based on the area budget
on-chip), and optimize a PE microarchitecture for the target appli-
cation and its required accuracy. The total traffic bandwidth divided
by the PE delay determines the network bandwidth requirement
per cycle to sustain full-throughput, by Little’s Law. The NoC inside
the accelerator needs to support this bandwidth. Next, we discuss
the challenges with traditional NoCs for this purpose.

3.2 Traditional and Application-Specific NoCs
Traditional NoCs such as buses, meshes, and crossbars are com-
mon across multicores today. Naturally, they have also found their
way into multi-PE DNN accelerators. For instance, Eyeriss [3] and
DNNWeaver [22] use buses, DianNao [4] and ShiDianNao [8] use

meshes, and TrueNorth [1] uses crossbars and meshes in a hier-
archical manner. However, these NoCs add scalability challenges
when used inside accelerators, as we discuss in section 5.

Application specific NoCs [19] generate NoCs in accordance
with the application’s communication graph that is known apri-
ori and are common in MPSoCs in the embedded domain. They
may seem natural as NoCs inside such accelerators to tailor the
NoC to the neural network dataflow. However, the traffic inside
the accelerator is not static; it varies layer by layer [6], and is de-
pendent on the mapping of the dataflow over PEs, and the input
parameters, as Fig. 3(a) shows. Nevertheless, we also implemented a
tree-based custom NoC inside the accelerator optimized for scatters
and gathers.

We perform a limit study with traditional NoCs with a WS
dataflow. In this limit study, we assume no storage in PEs, which
could mitigate the performance challenges of traditional NoCs at
the cost of increased area and power in each PE.

Performance. Fig. 4 (a) plots the runtime across the CONV1
layer of AlexNet for a weight-stationary accelerator with 64 PEs.
We compare the performance of a mesh, and a multi-bus/multi-
tree topology against an “ideal" NoC which is a single-cycle zero-
contention network. We make two observations.
(1) With a 1-cycle PE, we observe that the mesh and a single bus or
tree is 10× slower than the ideal. The reason is heavy contention
at links near the GB. Assuming that the GB can sustain higher in-
jection/ejection bandwidth, we also simulated NoCs with multiple
buses/trees and found that even with 64 buses, the design is 2×
slower than the ideal.
(2) As the PE delay increases, normally the overall delay should
increase as well, as we observe with the ideal. However, with the
mesh or single bus/tree, the overall delay is almost constant demon-
strating that the NoC is choked and is the bottleneck.

Area. Fig. 4 (b) plots the area of traditional NoCs relative to the
area of 64-PE array. All numbers are from RTL synthesis with in
15nm Nangate PDK [18]. The PE array is from Eyeriss [6]1. The
most telling observation is that traditional scalable networks like
mesh routers, prevalent across multicores, consume significantly

1We thank the Eyeriss authors for sharing the RTL implementation of a PE.
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Figure 6: The microarchitecture of three microswitches.

higher area than even the compute PEs. This is primarily because
routers in meshes are larger than a PE; utilizing a multicore mesh
NoC inside an accelerator is thus not an efficient design choice as
it would reduce the area available for the actual compute units,
reducing overall throughput. Crossbars are known to scale horribly
with number of nodes and this is also apparent from our area results.
Buses and the custom tree are better in terms of area.

Power. Fig. 4 (c) shows a similar trend with power. Traditional
meshes and crossbars end up consuming more power than the
entire compute array. This becomes worse as the number of PEs
increases.

Our conclusion from this study is two-fold:
(1) Meshes are not scalable solutions as NoCs inside accelerators.
From a performance perspective, they get throughput limited when
handling scatters and gathers. From an area and power perspective,
routers consume much higher area and power than PEs.
(2) Buses and trees are effective for an area and power point of
view, but they are non-configurable, which limit the performance
of accelerators. That is, they are not flexible enough to support
diverse demands of accelerators to support myriad CNN topologies,
mappings, and input sizes.

4 MICROSWITCH NETWORK GENERATOR
Accelerators achieve high throughput and energy efficiency in com-
putation by distributing computations to tiny processing elements,
exploiting massive parallelism. Similarly, we achieve high network
throughput and energy efficiency in communication by distribut-
ing communication to tiny microswitches. A microswitch consists
of a small combinational circuit and up to two FIFOs; in contrast
to the building blocks of traditional NoCs such as mesh routers
that house buffers, a crossbar, arbiters and control. We describe the
microswitch architecture in Section 4.2.

We design aNoC generator that aggregatesmultiplemicroswitches
and connects them in our proposed topology to build a light-weight
interconnect, that can be plugged into NN accelerators. Multiple
microswitches can be traversed within a single-cycle, (24 switches

within a GHz at 15nm, as we show later), enabling single-cycle
communication inside the NoC. We call this MPCmax for maximum
microswitches per cycle.

4.1 Topology
For aN PE design, we use aNloд(N )microswitch array, as shown in
Fig. 5. We divide the array into loд(N ) levels, with N microswitches
each. We numerically label the switches from the global buffer side
from Level0 to Level loд(N ) The microswitches in Level 0 are called
top switches, Levels 1 to loд(N ) − 1 are called middle switches, and
Level loд(N ) are called bottom switches. We layout our proposed
topology over the array to efficiently handle three traffic flows that
appears in any CNN implementation described in Section 3: scatter
(unicast and multicast), gather, and local, as shown in Fig. 5.

Scatter (unicast and multicast). For scatters, we construct a
tree structure in a microswitch array, with the root at one of the
top switches, and the leaves at the bottom switches, as shown in
Fig. 5(a). This simulates the functionality of bus: delivering data to
multiple destinations simultaneously within a cycle. Unlike a bus
that broadcasts data to every PE, however, our design delivers data
only to designated recipient PEs (i.e., a unicast or a multicast). Such
selective data delivery enhances energy efficiency by suppressing
redundant broadcasting; implementation is lightweight, comprising
of two one-bit registers in each branching switch and control signal
propagation wires whose width is 2× (N −1) when the number PEs
is N. (i.e., N-1 one-bit registers and an 2(N-1)-bit wire). We discuss
the control signal generation logic in detail in Section 4.5. Higher
throughput from the global buffer is available by simply connecting
to multiple top-switches, as we discuss later in this section.

Gather. For gather, each PE has dedicated connections up to
the top switches in Level 0, via bypass links within the middle
and bottom switches, as shown in Fig. 5(b). This provides high-
bandwidth. Top switches send gather data towards one (or more)
top switch connected to the global buffer’s I/O port. The top switch
connected to the global buffer I/O port selects one of the incoming
gather flits using a round-robin-based priority logic and sends the
flit to the global buffer in a pipelined manner.

Local. For PE to PE local traffic flows, we construct a bi-directional
linear network using the bottom switches, as shown in Fig. 5(c).
This network allows single-cycle traversals between any two PEs
by controlling the microswitches appropriately. For example, if PE1
is communicating with PE2, PE3 with PE6, and PE7 with PE4, all of
these can be supported simultaneously. We discuss this further in
Section 4.4. The design thus minimizes the latency and maximizes
the throughput of local traffic flows. The local traffic flow network
is supported by the bottom switches using multiplexers and a FIFO,
as discussed in Section 4.2. We manage the flow control using on/off
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reverse signaling in which each bottom switch latches incoming
local flit if the buffer in the next bottom switch is not available.

Supporting Higher Bandwidth. The bandwidth of the scatter
and gather networks is limited by the number of IO ports at the
GB, which is logically visible from Fig. 5. The goal of a network
architecture for accelerators has to be to make sure that the data
delivery bandwidth does not become a bottleneck, which would
lead to PEs stalling. As discussed earlier in Section 3.1, the required
bandwidth depends not just on the traffic, but also one the delay and
context state in each PE, which comes as an input to themicroswitch
NoC generator. We support higher bandwidth communication from
the GB using wider channels and/or multiple parallel networks.

4.2 Microarchitecture
We define the level of a microswitch as the number of layers be-
tween that microswitch and the global buffer, as described in Fig. 5.
Because the traffic pattern for the top (the first layer from the global
buffer), middle, and bottom level of microswitch array varies, we
present three types of microswitches for each.

Top switch. Top switches manage the gather and scatter (uni-
cast and multicast), from PE to global buffer and vice versa respec-
tively. Therefore, top switches contain two components: scatter
and gather units, as shown in Fig. 6 (a). The scatter unit passes
incoming flits to the branching nodes in the next level depending
on the value of two one-bit control registers (one per scatter output
port), determined by destinations of traversing flits. The traversal
is completely bufferless, with flits branching to any one or both
directions depending on the setup - unicast or multicast. The setup
of the control registers is described in Section 4.5. The gather unit
delivers incoming flits towards the global buffer I/O ports. There
can be up to three gather flits entering a top microswitch, depend-
ing on its location, as Fig. 5(b) shows. A round-robin arbiter is used
inside this unit. There is a an output FIFO after the arbiter to buffer
the gather while it waits to win arbitration at the next microswitch.

Middle switch.Middle switches, which belong to the level be-
tween the first and last level, manage scatter and gather traffic,
as shown in Fig. 6 (b). The scatter unit is the same as that in top
switches; the gather unit is just a wire that simply forwards incom-
ing gather flits toward top switches. Such a gather unit minimizes
the latency of gather flits. However, if the number of PEs increases,
gather flits need to traverse more number of microswitches in the
middle layer. Then, we need to insert pipeline latches to meet the
operating clock frequency, which is managed by our generator. Our
synthesis results using NanGate 15nm standard cell library [18]
shows that flits can pass 24 microswitches within a cycle (MPCmax)
when the operating clock frequency is 1GHz, which allows 24 mid-
dle layers that cover 224 PEs, a number large enough to cover
state-of-the-art neural network accelerators. Note that most neural
network accelerators today operate with a clock frequency lower
than 1GHz and employ less than 256 PEs [3–5, 16]. Thus our NoC
can provide single-cycle traversals up to the top switches for gathers.

Bottom switch. Bottom switches, which belong to the last level
adjacent to PEs, manage scatter, gather, and local traffic. The scat-
ter and gather units are wires. The local unit consists of a small
number of components: three muxes, four demuxes, two FIFOs, and
combinational logic that generates the mux/demux control signals,
as shown in Fig. 6 (c). Although the number of components in a

bottom switch is larger than that of components in top or middle
switches, the overall overhead is not significant because the number
of bottom switches increases linearly with the number of PEs. Local
traffic units enable single-cycle multi-switch traversal, all the way
from the source to the destination. Single-cycle multi-hop designs
require extra control logic that introduces extra area and power
overheads [13] to manage conflicts dynamically. We minimize such
overheads by presetting microswitches to create multiple paths
between PEs, as long as there are no conflicting links. We also allow
flits to arbitrate for part of/the entire set of local links, like a bus.

We still require buffers in bottom switches for two reasons. (1)
the buffer at the destination PE may be full; as a result the flit
on the local network needs to wait. (2) the maximum number of
microswitches to be traversed may be greater than MPCmax. Recall
that our synthesis results at 15nm demonstrate a MPCmax of 24 at
1GHz. We force the bypassing flits to be latched after traversing
MPCmax microswitches. The network interface between a PE and a
bottom switch inserts a one-hot encoded bit vector that represents
the number of remaining traversals. This value decreases via a
simple shift in each bottom switch during traversal, with the signal
getting latched when all bits are zero.
4.3 Routing
For scatters, the routing is predetermined by the microswitch con-
trol logic (Section 4.5). The control enables broadcasts, multicasts,
and unicasts within a single cycle. For gathers, the route of all
flows is fixed - from the PE to the GB. For local traffic, the NIC of
source PEs inserts a one-hot bit vector representing the number of
microswitches to traverse until the destination.
4.4 Flow Control
The three kinds of traffic use different flow-control strategies, as
determined by the switches they traverse. The overall goal is to
provide single-cycle communication for all three traffic types, at
the maximum possible throughput.

Scatter. For scatters, we employ a customized cycle-by-cycle
circuit switching technique that sets up unicast/multicast/broadcast
paths that are valid for one cycle for each flit. This is done by
the network controller, described later in Fig. 7. The global buffer
maintains credits for the input buffers in the PEs, and performs a
scatter only if all destination PEs have at least one free buffer.

Gather. For gather traffic, since the traffic passes through unidi-
rectional wires in the middle switches, no flow control is required
here. Top switches, however, need a flow control for gathers, since
an arbitration grant plus an empty FIFO slot in the next top switch is
required before a flit can be dequeued. We use on/off back signaling
to support this.

Local. For local traffic, we support two schemes. (1) Static: the
bottom switches are preset to enablemultiple parallel circuit-switched
connections between different PEs. This scheme depends on the
mapping scheme across PEs and uses On/off back signaling be-
tween bottom switches. We discuss this scheme in Section 4.5. (2)
Dynamic: part of or the entire set of local links can be arbitrated
for and used like a bus.

4.5 Network Reconfiguration and Control
A key property of our microswitch network is cycle-by-cycle re-
configurability. The reconfiguration is controlled by one-bit control
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Figure 7: An example of scatter tree reconfiguration. (a) Control signal generation. The controller recursively tests a set of 2k consecutive
bits in a destination bit vector if is not zero until it reaches level 0. If a test bit vector is not zero, the corresponding switch is active. Therefore,
the parent node switch at the lower level is active as well to provide data to the child switch. Our control logic is based on such an observation.
(b) Control signal mapping for a multicast scatter. For simplicity, we only show microswitches that belong to the scatter tree. The 2-bits in
eachmicroswitch is the control register value, one for each branch of the sub-tree. For example, if the control register values are 10, incoming
scatter flit is forwarded to the upper subtree in the figure. (c) Local traffic control. Mode 1 (Static) - Control register manage flow control;
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communication simultaneously.Mode 2 (Dynamic) - An arbiter selects one flit and grants the flit access throughmultiple switches exclusively.

registers for muxes at each microswitch, to enable single-cycle tra-
versals across the fabric over multiple microswitches. The top and
middle switches can be configured for single-cycle scatters (unicast,
multicasts, and broadcasts), and the bottom switches for single-
cycle local traffic. Gather network uses conventional flow-control
and delivers flits in a pipelined manner.

4.5.1 Control Signal Generation.
Scatter Network. The reconfiguration for scatters is controlled
by two one-bit control registers in each middle and top switch
that are branching nodes in the tree we construct, as the example
in Fig. 7 shows. The value of control registers indicates if an in-
coming data may flow toward their corresponding sub branches
of a branching node in the tree. The network controller converts
destination bits of a flit into control register values and sends the
register values one cycle before the data flit traverses the scatter
tree. The reconfiguration and the data flit traversal are pipelined so
the controller inserts a data flit at every cycle. That is, while a data
flit traverses the tree network, the controller generates and sends
a control signal for the next data flit. Therefore, the control logic
does not degrade the overall throughput.

The controller receives a destination bit vector from the global
buffer, which consists of N bits (N: number of PEs) that represents
valid destinations, and generates a control signal that contains the
value of control registers in branch switches of the scatter/broadcast
tree. The control signal generation logic is based on the observation
that each branching switch needs to send a flit toward a lower
branch if the branch contains at least one of the valid destinations.
That is, we can determine the control signal by examining two,
four, and 2k consecutive bits in a destination bit vector for the
level loд(N ) − k , where N is the number of PEs and k is an integer
between 0 and loд(N ). We provide an example in Fig. 7(a). The logic
checks if an individual bit in the destination bit vector is nonzero;
the results are the control signals for the last level. In the next
step, the logic checks if consecutive two-bit values are nonzero; the
results are the control signals for the next level. The logic repeats
to double the size of test consecutive bits and check if each chunk
is nonzero until the test bit size covers the half of the destination
bit vector. If the number of PEs is not a power of two (i.e., number
of PEs < 2k ), the logic regards the destination bit width as 2k and
pads zeros for invalid destinations.

Local Network. On the local network, we provide the ability
to partition the set of local links into single-cycle circuit-switched
paths between any two PEs (subject to the number of switches
being less than MPCmax). The local network configuration is done
across larger time epochs rather than every cycle. For instance,
for CNNs, this is done at the start of every convolutional layer.
Since the network controller manages delivery of scatters, it also
knows which PEs will communicate with which other PEs, and
accordingly tries to provide neighbor-to-neighbor communication
as much as possible, which can be supported in parallel, as shown in
Fig. 7(c). Each bottom microswitch has 2-bits to determine whether
incoming flits need to be forwarded to the next microswitch or stop.
Flits that stop at a bottom switch are read by the appropriate PE if
the destination matches. Thus the bottom switch allow the local
links to form configurable buses of different lengths.

If partitioning the bus statically is not possible for handling all
local communication flows simultaneously, say for fully-connected
layers of CNNs, some/all bottom switches operate in a forward
mode and the local links behaves like a bus via dynamic arbitration,
as shown in Fig. 7(c). We also enable part of the local links to operate
like an arbitrated bus, and the remaining to be statically configured.
This is all managed by the reconfiguration controller.

4.5.2 Control Signal Mapping.
We utilize a separate control plane to configure each microswitch.
Recall that each switch has a 2-bit configuration state. The number
of bits in the control plane is a trade-off with reconfiguration time,
and multiple implementations can exist. We support two:

Dedicated. We use 2 × NloдN wires, to enable cycle by cycle
reconfiguration. As an energy optimization, the controller only
sends bits to switches that need to update their configuration. A
challenge with this design is that the configuration plane may
become too wide at large PE counts.

Ring. We also support an alternate design for the control plane
where all switches are linked via a configuration ring (analogous to
scan chains today) to carry a switch id and the 2-bit configuration.
The controller sends configurations for each switch multiple cycles
in advance, keeping the delay of traversing the ring in mind. This
is possible since the dataflow is fixed after the mapping is complete.
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Network Bus, Custom tree, Crossbar, Mesh, Hierarchical
Mesh (4 clusters, 1X or 2X BW at GB), Microswitch

Language Bluespec System Verilog (BSV) [20]
Technology 15nm NanGate PDK [18]
Traffic Patterns WS (without local accumulation) and RS
Application Alexnet (CNN) [14]

Table 1: A summary of evaluation configuration
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5 EVALUATIONS
Table 1 presents our evaluation methodology and configurations.
In addition to traditional NoCs, we also implement and evaluate the
performance of hierarchical designs, which are popular in recent
DNN accelerators [1, 5, 22]. We use a hierarchical mesh with four
clusters (e.g., for 64 PEs, each cluster contains 16 PEs).

5.1 Area and power estimation
Fig. 8 presents the post-synthesis area and power results of our
micro-switch NoC compared to a traditional NoCs. The first stark
observation is that the mesh adds too much overhead, both in terms
of area, and power, compared to even the PE array. The crossbar
area and power are reasonable at 32-64 PEs, but it shoots up at large
PE counts. The mesh and crossbar consume 7.4X more power and
7.2X more area compared to the PE array at 256 PEs. The bus2, tree
and micro-switch array are the most scalable for area and power.
On average, the micro-switch array consumes 47.8% lower area and
39.2% lower power than all baselines. Assuming a 512B SRAM in
each PE [3], we find that a micro-switched based accelerator can
house 2.32X more PEs than a mesh in the same area.

5.2 Throughput and latency
Fig. 9 (a) presents the total latency for running Alexnet in WS and
RS accelerators with 16, 32, and 64 PEs. Since multicast-scatter is
dominant in weight-stationary traffic, as Fig. 3 shows, the bus and
tree performs well with WS accelerators. However, as RS accel-
erators involve local traffic, the micro-switch network performs
the best because it exploits the local traffic network between the
bottom switches. Mesh performs the worst in every case because it
needs to serialize all the scatter traffic. An optimization that clones
a scatter flit in each router is feasible, but such an optimization
demands more area and power. Considering the area and power

2Note that this is a post-synthesis result that does not take into account the RC of the
final bus layout. Thus the observed power consumption is somewhat under-evaluated.

overhead of mesh is already prohibitively high (Section 5.1), it is
not practical even if such an optimization were to be applied. The
HMesh with 2X bandwidth at the global buffer performs better than
the mesh, but is still worse than the bus and microswitch which
have 1X bandwidth due to the lack of multicast support. ‘For RS
traffic, the HMesh had worse performance because of mapping
inefficiencies caused by the fixed size of clusters.

In Fig. 9(b), we compare the performance of the networks with
synthetic random scatter/gather traffic. The performance of the
microswitch scatter network scales linearly without saturating as
it guarantees single-cycle traversal to multiple destinations via
the single-cycle multiple-hop network. The microswitch gather
network saturates early due to heavy congestion at the link going
into the GB, and we recommend using multiple gather networks
or wider links at the top switches to enhance throughput. The bus
and tree networks saturate very early.

Fig. 10 shows the performance breakdown of the NoCs for
running each layer of AlexNet. The micro-switch fabric provides
the lowest runtime, a 49% savings on average across all NoCs, as it
eliminates the scatter and/or gather bandwidth bottlenecks present
in other NoCs.
5.3 Energy consumption
Since a bus always broadcasts flits to the PE array, it requires more
energy for each flit. The worst case of such an inefficiency is unicast
that has only one destination but bus consumes energy for broad-
cast. More number of PEs aggravate the energy inefficiency of bus,
as Fig. 11 (a) highlights. The amount of energy required for single
flit traversal affects the overall energy consumption of entire com-
putation. The total energy consumption for Alexnet convolution
layers in Fig. 11 (b) shows the micro-switch NoC being the most
efficient in terms of overall energy as it activates only the required
minimal links for each flit traversal, for both scatters and gathers.

In summary, we can observe that the micro-switch network per-
forms well on all metrics - latency, throughput, area, power, and scala-
bility, when used inside a neural network accelerator, while traditional
NoCs fail on one or more of these fronts.

5.4 Bottom switch bypass for local traffic
Depending on the operating clock frequency, the number of bot-
tom micro-switches a local traffic flit can traverse within a cycle
i.e., MPCmax, varies, as shown in Fig. 11 (c). The MPCmax value
affects the throughput of local traffic network based on the source-
destination pattern. If an accelerator design requires end-to-end
local traffic, then the delay of such local traffic flits is the number
of PEs divide by MPCmax. However, assuming that the neural net-
work mapping algorithm did a good job mapping communication
PEs close to each other, such a worst case would be rare, and we
expect most local traversals to take a single-cycle leveraging the
single-cycle over MPCmax-hops feature of our micro-switch array.
For example, a PE in an RS accelerator requires partial sums to
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traverse to an adjacent PE in the same column of the PE array [3].
We can construct a column-first linear bottom switch network for
it, and the number of bypass hops toward the destination is always
one in such a configuration. This configuration works with either
of the control logic we discussed in Section 4.5.

6 RELATEDWORK
NoCs in neural networks accelerators. Vainbrand, et al. [25]
compared interconnection networks in neural network accelera-
tors from a theoretical perspective and concluded that a multicast
mesh is the most optimized solution. The authors remarked that
tree-based networks are not a good option for inter-PE commu-
nication, which we address in this work by providing local links
in bottom switches. Theocharides et al. [24] and Emery et al. [9]
suggested that mesh is the best NoC in neural network accelerators
because of its scalability and ease of reconfigurability. Diannao [4]
and Shidiannao [8] relied on mesh-based interconnects for data
transfer. Dadiannao [5] employed fat tree for scatter and gather and
3D mesh via hyperTransport 2.0 to distribute data among nodes.
Eyeriss [3] uses separate buses for its scatters and gathers. Carrillo
et al. [2] described H-NoC infrastructure in which the neural nodes
are arranged in three layers, module, tile and cluster. In H-NoC, any
traffic moving from a lower to upper level is reduced, which main-
tains the scalability of the network. Spinnaker [11] implemented
SNNs using clusters of multiprocessor nodes with a 2D triangular
mesh for inter-node and a 2D mesh for intra-node communication.
IBM Truenorth [1] employed a 256×256 crossbar for traffic inside
a neurocore and mesh for inter-core communication. Our micro-
switch based NoC can enhance all these designs by lowering the
area and power of the NoC, enabling more PEs to be added.
Lightweight and application-specificNoCdesign.NOC-out [17]
designed a lightweight switch-based network and effectively ad-
dressed cache coherence traffic in many-core CMPs. Although both
of NOC-Out and microswitch network are based on lightweight
switches, microswitch network (1) exploits single-cycle multi-hop
feature to implement multicast scatter, (2) allows multiple reduction
points based on global buffer bandwidth, and (3) statically generate
control signals to implement cycle-by-cycle circuit switching that
eliminate the necessity of VC buffers, VC allocation, arbitration,
credit management logic inside switches, which minimizes area
and power. Ogras et al. [21] optimized general-purpose NoCs for
selected applications by prioritizing application-specific traffic in
selected long range paths. Kim et al. [12] employed a 2D mesh to

address the multi-source-multi-destination traffic of augmented-
reality applications in head-mounted displays with a scheduler for
mapping the application over the NoC.

7 CONCLUSION
We present a novel NoC design for neural network accelerators that
consists of configurable light-weight micro-switches. The micro-
switch network is a scalable solution for all the four aspects -
latency, throughput, area, and energy - while traditional NoCs
(bus/mesh/crossbar) only achieve scalability for some of them. We
also provide a reconfiguration methodology to enable single-cycle
paths over multiple micro-switches to support dynamism across
neural network layers, mapping methodologies and input sizes.
While our evaluations focused on neural network accelerators, we
believe that the micro-switch fabric can be tuned for any accelerator
built using a spatial array of hundreds of PEs.
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