
The Full Version Appears in the 45th International Symposium on Computer Architecture (ISCA 2018)

Algorithm-SoC Co-Design for Energy-Efficient Mobile Continuous Vision

Yuhao Zhu1 Anand Samajdar2 Matthew Mattina3 Paul Whatmough3

1University of Rochester
2Georgia Institute of Technology

3Machine Learning & AI Research, ARM
yzhu@rochester.edu, anandsamajdar@gatech.edu
{matthew.mattina, paul.whatmough}@arm.com

Abstract
Continuous computer vision (CV) tasks increasingly rely on

convolutional neural networks (CNN). However, CNNs have
massive compute demands that far exceed the performance
and energy constraints of mobile devices. In this paper, we pro-
pose an algorithm-architecture co-designed system, Euphrates,
that simultaneously improves the energy-efficiency and perfor-
mance of continuous vision tasks. Harnessing the insight that
changes in pixel data between consecutive frames represents
visual motion, we first propose an algorithm that leverages this
motion information to relax the number of expensive CNN
inferences required by continuous vision applications. We
co-design a mobile System-on-a-Chip (SoC) architecture to
maximize the efficiency of the new algorithm. The key to
our architectural augmentation is to co-optimize different IP
blocks in the vision pipeline collectively. Measurement and
synthesis results show that Euphrates achieves up to 66% SoC-
level energy savings, with only 1% accuracy loss. Our work
demonstrates a promising first step toward tightly co-designing
the mobile SoC architecture with vision algorithms.

1. Introduction
Computer vision (CV) is the cornerstone of many emerging
application domains, such as advanced driver-assistance sys-
tems (ADAS) and augmented reality (AR). Traditionally, CV
algorithms were dominated by hand-crafted features (e.g.,
Haar [29] and HOG [14]), coupled with a classifier such as a
support vector machine (SVM) [13]. These algorithms have
low complexity and are practical in constrained environments,
but only achieve moderate accuracy. Recently, convolutional
neural networks (CNNs) have rapidly displaced hand-crafted
feature extraction, demonstrating significantly higher accuracy
on a range of CV tasks including image classification [28],
object detection [25], and visual tracking [24].

This paper focuses on continuous vision applications that
extract high-level semantic information from real-time video
streams. Continuous vision is challenging for mobile archi-
tects because it requires careful engineering of the mobile
system as a whole. On one hand, continuous vision naturally
encompasses multiple on-/off-chip hardware components such
as the camera sensor, Image Signal Processor (ISP), DRAM,

and various CV accelerators. Focusing only on one single
System-on-a-Chip (SoC) component is unlikely to provide
significant overall system-level improvement. On the other
hand, unlike most mobile applications that have bursty behav-
iors [18], continuous vision applications are generally “always-
on.” As such, many familiar techniques that target bursty be-
haviors such as turbo boosting are not applicable. Thus, we
must make wise SoC architecture decisions.

The compute requirement for continuous vision is enor-
mous. Using object detection as an example, today’s CNN
accelerators could offer about 1 Tera-Operations-Per-Second
(TOPS) peak compute capability under a typical 1 W mobile
power budget [7, 11]. State-of-the-art, CNN-based approaches
such as YOLOv2 [26], SSD [23], and Faster R-CNN [27] all
have at least one order of magnitude higher compute require-
ments than accommodated in a mobile device. Reducing the
CNN complexity (e.g., Tiny YOLO [25], which is a heavily
truncated version of YOLO with 9/22 of its layers) or falling
back to traditional hand-crafted features such as Haar [15]
and HOG [30] lowers the compute demand, which, however,
comes at a significant accuracy penalty.

The goal of our work is to improve the compute efficiency of
continuous vision with small accuracy loss, thereby enabling
new use cases on mobile devices. Our main contribution in this
paper is an algorithm-SoC co-designed approach to achieve
that goal. The key idea is to exploit the motion information
inherent in real-time videos. Specifically, conventional contin-
uous vision algorithms treat each frame as a standalone entity
and thus execute an entire CNN inference on every frame.
However, pixel changes across consecutive frames are not
arbitrary; instead, they represent visual object motion. We
propose a new algorithm that leverages the temporal pixel
motion to extrapolate vision results with little computation
while avoiding expensive CNN inferences on many frames.

We augment a conventional mobile SoC to support the new
algorithm. Our SoC augmentations harness two architectural
insights. First, we can greatly improve the compute efficiency
while simplifying the architecture design by exploiting the syn-
ergy between different SoC IP blocks. Specifically, we observe
that the pixel motion information is naturally generated by the
ISP early in the vision pipeline owing to ISP’s inherent algo-

1

CNN
Accelerator
(~700 mW)

ISP

(~150 mW)

Camera
Sensor

(~150 mW)

Conversion

Image
Sensing

Image Signal
Processing

Bayer Domain
Dead Pixel
Correction

Demosaic

Computer
VisionRAW RGB/

YUV

RGB Domain
Color

Balance

Semantic
Results

Frontend Backend

… … …

Semantic Understanding

Detection Tracking …

H
ar
dw

ar
e

So
ftw

ar
e

Fig. 1: A typical continuous computer vision pipeline.

rithms, and thus can be obtained with little compute overhead.
We augment the SoC with a lightweight hardware extension
that exposes the motion information to the rest of the SoC.

Second, although the new algorithm is light in compute,
implementing it in software is energy-inefficient from a sys-
tem perspective because it would frequently wake up the CPU,
which is usually in the low-power mode during continuous
vision tasks. Instead, we introduce the concept of a motion
controller, which is a new hardware IP we propose that au-
tonomously sequences the vision pipeline and performs mo-
tion extrapolation—all without interrupting the CPU. The mo-
tion controller’s microarchitecture resembles a simple micro-
controller, and thus incurs very low design and area cost.

We develop Euphrates, a proof-of-concept system of our
algorithm-SoC co-designed approach. We evaluate Euphrates
on object detection, which is critical to many continuous vi-
sion scenarios such as ADAS and AR. Based on real hardware
measurements and RTL implementations, we show that Eu-
phrates doubles the object detection rate while reducing the
SoC energy by 66% at the cost of less than 1% accuracy loss.

2. Background and Motivation

We first give an overview of the continuous vision pipeline
from the software and hardware perspectives (Sec. 2.1). In
particular, we highlight an important design trend in the vision
frontend where ISPs are increasingly incorporating motion es-
timation, which we exploit in this paper (Sec. 2.2). Finally, we
briefly describe the block-based motion estimation algorithm
and its data structures that are used in this paper (Sec. 2.3).

2.1. The Mobile Continuous Vision Pipeline

The continuous vision pipeline consists of two parts: a fron-
tend and a backend, as shown in Fig. 1. The frontend prepares
pixel data for the backend, which in turn extracts semantic
information for high-level decision making.

The frontend uses (off-chip) camera sensors to capture light
and produce RAW pixels that are transmitted to the mobile
SoC, typically over the MIPI camera serial interface (CSI) [6].
Once on-chip, the Image Signal Processor (ISP) transforms
the RAW data in the Bayer domain to pixels in the RGB/YUV
domain through a series of imaging algorithms. In architecture
terms, the ISP is a specialized IP block based on a pipeline of
mostly stencil operations operating on a set of local SRAMs

<x, y>

<x+u, y+v>

MV = <u, v>

L

Macroblock
in frame N

Search window

x

y

Best match
in frame N-1

d

2d + 1

(a) Block-matching. (b) Motion vectors.

Fig. 2: Motion estimation. (a): Block-matching example in a (2d +
1)× (2d + 1) search window. L is the macroblock size. (b): Each
arrow reprensents an MB’s motion vector. MBs in the foreground
object have much more prounced motions than the background MBs.

(i.e., line-buffers). The vision frontend typically stores frames
in the main memory for communicating with the vision back-
end due to the large size of the image data.

The continuous vision backend extracts useful information
from images through semantic-level tasks such as object de-
tection. Traditionally, these algorithms are spread across DSP,
GPU, and CPU. Recently, mobile SoC vendors have deployed
dedicated CNN accelerators such as the Neural Engine in the
iPhoneX [2] and the CNN co-processor in the HPU [8].

2.2. Motion Estimation in ISPs

ISPs are integrating sophisticated computational photogra-
phy algorithms that are traditionally performed as separate
image enhancement tasks, possibly off-line, using CPUs or
GPUs. Among new algorithms that ISPs are integrating is
motion estimation, which estimates how pixels move between
consecutive frames. Motion estimation is at the center of
many imaging algorithms such as temporal denoising, video
stabilization (i.e., anti-shake), and frame upsampling. For
instance, a temporal denoising algorithm [20, 22] uses pixel
motion information to replace noisy pixels with their noise-
free counterparts in the previous frame. Motion-based imaging
algorithms are traditionally performed in GPUs or CPUs later
in the vision pipeline, but they are increasingly subsumed into
ISPs to improve compute efficiency. Commercial examples of
motion-enabled camera ISPs include ARM Mali C-71 [3] and
Hikvision video surveillance cameras [4], just to name a few
based on public information.

2.3. Motion Estimation using Block Matching

Among various motion estimation algorithms, block-matching
(BM) [19] is widely used in ISP algorithms such as temporal
denoising [20]. The key idea of BM is to divide a frame into
multiple L× L macroblocks (MB), and search in the previ-
ous frame for the closest match for each MB using Sum of
Absolute Differences (SAD) of all L2 pixels as the matching
metric. The search is performed within a 2-D search window
with (2d +1) pixels in both vertical and horizontal directions,

2

where d is the search range. Fig. 2a illustrates the concepts.
Eventually, BM calculates a motion vector (MV) for each

MB, which represents the location offset between the MB and
its closest match in the previous frame as illustrated in Fig. 2a.
Critically, this offset can be used as an estimation of the MB’s
motion. For instance, an MV <u,v> for an MB at location
<x,y> indicates that the MB is moved from location <x+u,y+
v> in the previous frame. Fig. 2b visualizes the motion vectors
in a frame. Note that MVs can be encoded efficiently. An MV
requires dlog2(2d +1)e bits for each direction, which equates
to just 1 byte of storage under a typical d of seven.

3. Motion-based Continuous Vision Algorithm

This section first provides an overview of the motion-based
algorithm (Sec. 3.1). We then discuss two important design
decisions made for the algorithm (Sec. 3.2 and Sec. 3.3).

3.1. Overview

Euphrates makes a distinction between two frame types: In-
ference frame (I-frame) and Extrapolation frame (E-frame).
An I-frame refers to a frame where vision computation such
as detection and tracking is executed using expensive CNN
inference with the frame pixel data as input. In contrast, an
E-frame refers to a frame where visual results are generated
by extrapolating ROIs from the previous frame, which itself
could either be an I-frame or an E-frame.

Intuitively, increasing the ratio of E-frames to I-frames re-
duces the number of costly CNN inferences, thereby enabling
higher frame rates while improving energy-efficiency. How-
ever, this strategy must have little accuracy impact to be useful.
As such, the challenge of our algorithm is to strike a balance
between accuracy and efficiency. We identify two aspects that
affect the accuracy-efficiency trade-off: how to extrapolate
from previous frame, and when to perform extrapolation.

3.2. How to Extrapolate

The goal of extrapolation is to estimate the ROI(s) for the cur-
rent frame without CNN inference by using the motion vectors
generated by the ISP. Our hypothesis is that the average motion
of all pixels in a visual field can largely estimate the field’s
global motion. Thus, the first step in the algorithm calculates
the average motion vector (µ) for a given ROI according to
Equ. 1, where N denotes the total number of pixels bounded by
the ROI, and −→vi denotes the motion vector of the ith bounded
pixel. It is important to note that the ISP generates MVs at
a macroblock-granularity, and as such each pixel inherits the
MV from the MB it belongs to.

µ = ∑
N
i
−→vi / N (1)

α
i
F = 1 − SADi

F
255×L2 (2)

MVF = β ·µF + (1−β) ·MVF−1 (3)

Extrapolating purely based on average motion, however,
is vulnerable to motion vector noise due to the nature of the
block-based motion estimation algorithm. For instance, when
a visual object is occluded or blurred, the block-matching al-
gorithm may not find a good match within the search window.

To represent how noisy an MV is, we associate each MV
with a confidence value. We empirically find that an MV’s
confidence is highly correlated with its SAD value, which is
generated during block-matching. Intuitively, a higher SAD
value indicates a lower confidence, and vice versa. Equ. 2
formulates the confidence calculation, where SADi

F denotes
the SAD value of the ith macroblock in frame F , and L denotes
the dimension of the macroblocks. Effectively, we normalize
an MV’s SAD to the maximum possible value (i.e., 255×L2)
and regulate the resultant confidence (α i

F) to fall between [0,1].
We then derive the confidence for an ROI by averaging the
confidences of all the MVs encapsulated by the ROI.

Given the confidence value, the idea to filter noisy motions
is to assign a high weight to the average MV in the current
frame (µF) if its confidence is high. Otherwise, we put more
weight on the motion from previous frame. Essentially, this
is equivalent to apply a high-pass filter that passes high confi-
dence MVs. In a recursive fashion, this filter can be achieved
by using Equ. 3, where MVF denotes the final motion vector
for frame F , MVF−1 denotes the motion vector for the previous
frame, and β is the filter coefficient that is determined by α . In
our experiments, we find it effective to use a simple piece-wise
function that sets β to α if α is greater than a threshold and to
0.5 otherwise. In the end, we linearly apply the final motion
vector (MVF) to an ROI’s location in the previous frame to
update its new location. That is: RF = RF−1 +MVF

3.3. When to Extrapolate

Another important aspect of the extrapolation algorithm is to
decide which frames to execute CNN inference on, and which
frames to extrapolate. To simplify the discussion, we intro-
duce the notion of Extrapolation Window (EW), which is the
number of consecutive frames between two I-frames (exclu-
sive). Intuitively, as the EW increases, the compute efficiency
improves, but errors introduced by extrapolation also start
accumulating, and vice versa. Therefore, EW is an important
knob that determines the trade-off between compute efficiency
and accuracy. Euphrates provides two modes regarding EW
control: a constant mode and an adaptive mode.

In the constant mode, EW is statically set as a constant. A
useful feature of the constant mode is that it offers predictable
performance and energy-efficiency improvements. For in-
stance, under an EW of two one can roughly estimate that the
amount of computation per frame is reduced by half, translat-
ing to 2× performance increase or 50% energy savings.

However, the constant mode can not adapt to extrapola-
tion inaccuracies. Without loss of generality, we introduce
a dynamic control mechanism to respond to inaccuracies in-
troduced by motion extrapolation. Specifically, whenever a

3

Legend

DRAM

Fr
am

e
Bu

ffe
r

Camera
Sensor ISP CNN

Engine

SoC Interconnect

Motion
Controller

Pixel Data Results
Buffer

SRAM

Sensor
Interface

SRAM

Job
Descriptor

Raw
Sensor
Data

MIPI CSI

RGB
Frame

Metadata

ROIs
Labels

Motion
Vectors

ROIs
Labels

CPU
(Host)

SRAM

Frontend

Backend

Fig. 3: Block diagram of the augmented continuous vision subsystem in a mobile SoC.

CNN inference is triggered we compare its results with the
ones obtained from extrapolation. If the difference is larger
than a particular threshold, we incrementally shrink the EW;
conversely, if the difference is consistently lower than the
threshold, we incrementally increase the EW.

4. Architecture Support

This section starts from a state-of-the-art mobile SoC and
shows how to co-design the SoC architecture with the pro-
posed algorithm. After providing an overview (Sec. 4.1), we
describe the hardware augmentations required in the fron-
tend (Sec. 4.2) and backend of the vision subsystem (Sec. 4.3).

4.1. System Overview

Fig. 3 illustrates the augmented mobile SoC architecture. In
particular, we propose two architectural extensions. First, mo-
tivated by the synergy between the various motion-enabled
imaging algorithms in the ISP and our motion extrapolation
CV algorithm, we augment the ISP to expose the motion vec-
tors to the vision backend. Second, to coordinate the backend
under the new algorithm without significant CPU intervention,
we propose a new hardware IP called the motion controller.
The frontend and backend communicate through the system
interconnect and DRAM.

Our proposed system works in the following way. The CPU
initially configures the IPs in the vision pipeline, and initiates
a vision task by writing a job descriptor. The camera sensor
module captures real-time raw images, which are fed into the
ISP. The ISP generates, for each frame, both pixel data and
metadata that are transferred to an allocated frame buffer in
DRAM. The motion vectors and the corresponding confidence
data are packed as part of the metadata in the frame buffer.

The motion controller sequences operations in the backend
and coordinates with the CNN engine. It directs the CNN
engine to read image pixel data to execute an inference pass
for each I-frame. The inference results, such as predicted
ROIs and possibly classification labels for detected objects,
are written to dedicated memory mapped registers in the mo-
tion controller through the system interconnect. The motion
controller combines the CNN inference data and the motion
vector data to extrapolate the results for E-frames.

4.2. Augmenting the Vision Frontend

To simplify discussion, this paper assumes that the motion
vectors are generated by the temporal denoising (TD) stage in
an ISP. The motion estimation block in the TD stage calculates
the MVs and uses a small local SRAM to buffer them, which
are then used by the motion compensation block to denoise the
current frame. After the current frame is temporally-denoised
the SRAM space for its MVs can be recycled.

We propose to expose the MVs by storing them in the
metadata section of the frame buffer, which resides in the
DRAM and is accessed by other SoC IPs through the system
MMU. This augmentation is implemented by modifying the
ISP’s sequencer to properly configure the DMA engine.

Piggybacking the existing frame buffer mechanism rather
than adding a dedicated link between the ISP and the vision
backend has the minimum design cost with negligible memory
traffic overhead. Specifically, a 1080p frame (1920 × 1080)
with a 16 × 16 macroblock size will produce 8,100 motion
vectors, equivalent to only about 8 KB per frame (Recall
from Sec. 2.3 that each motion vector can be encoded in one
byte), which is a very small fraction of the 6 MB frame pixel
data that is already committed to the frame buffer.

4.3. Augmenting the Vision Backend

We augment the vision backend with a new IP called motion
controller. Its job is two-fold. First, it executes the motion
extrapolation algorithm. Second, it coordinates with the CNN
engine without interrupting the CPU. The CNN accelerator is
left intact and we reuse its interfaces to the SoC interconnect.

We design the motion controller engine as a micro-
controller (µC) like IP, similar to many sensor co-processors
such as Apple’s Motion Co-processor [1]. It sits on the system
interconnect, alongside the CNN accelerator. Fig. 4 shows the
microarchitecture of the extrapolation controller. Important
data and control flows in the figure are numbered. The motion
controller is assigned the master role and the CNN engine acts
as a slave in the system. The master IP controls the slave IP by
using its sequencer to program the slave’s memory-mapped
registers (1 and 2 in Fig. 4). The slave IP always returns the
computation results to the master IP (3) instead of directly
interacting with the CPU. We choose this master-slave sepa-

4

CNN Engine

Systolic MAC
Unit Array

SRAM
Buffer

DMA

Scalar Unit
(ACT, Pooling)

Sequencer (FSM)

Extrapolation UnitMotion
Vector
Buffer

DMA

Sequencer (FSM)

Motion Controller

ROI Selection

ROI

4-Way
SIMD Unit

Scalar

MVs

New
ROI

MMap
Regs

MMap
Regs R

O
I

W
in

si
ze

B
as

e
A

dd
rs

2

3

6

4 1

5

Conf

SoC Interconnect

Fig. 4: Euphrates adds the motion controller to the vision backend,
alongside an existing, unmodified CNN inference accelerator. Dash
lines are control signals and solid lines represent the data flow.

ration, instead of the other way around, because it allows us
to implement all the control logics such as adaptive EW com-
pletely in the extrapolator engine without making assumptions
about the CNN accelerator’s internals.

The core of the motion controller’s datapath is an extrapola-
tion unit which includes a SIMD unit and a scalar unit. The
extrapolation operation is highly parallel (Sec. 3.2), making
SIMD a nature fit. The scalar unit is primarily responsible
for generating two signals: one that controls the EW size in
the adaptive mode (4) and the other that chooses between
inferenced and extrapolated results (5). The IP also has a set
of memory-mapped registers that are programmed by the CPU
initially and receive CNN engine’s inference results (6).

5. Implementation and Experimental Setup
This section introduces our hardware modeling methodology
(Sec. 5.1) and software infrastructure (Sec. 5.2).

5.1. Hardware Setup

Our evaluation methodology is based on the GemDroid [12]
SoC simulator. We develop a functional model, a performance
model, and an energy model for evaluating the continuous
vision pipeline. The functional model takes in video streams
to mimic real-time camera capture and implements the extrap-
olation algorithm in OpenCV, from which we derive accuracy
results. We integrate models for the camera sensor, the ISP, the
CNN accelerator, and the motion controller. The performance
model simulates the timing of each IP and cross-IP activities,
from which we tabulate SoC events that are fed into the power
model for energy estimation.

Whenever possible, we calibrate the power model by mea-
suring the Nvidia Jetson TX2 module [5], which is widely
used in mobile vision systems. We develop RTL models for
the NN accelerator and the motion controller, and refer to
public data sheets when direct measurement is unavailable.
Overall, the power consumption introduced by the motion
controller is only 2.2 mW. The area is also negligible (35,000
um2). Table 1 shows the details about our modeled SoC.

Table 1: Details about the modeled vision SoC.

Component Specification
Camera Sensor ON Semi AR1335, 1080p @ 60 FPS

ISP 768 MHz, 1080p @ 60 FPS

NN Accelerator
(NNX)

24×24 systolic MAC array
1.5 MB double-buffered local SRAM
3-channel, 128bit AXI4 DMA Engine

Motion Controller
(MC)

4-wide SIMD datapath
8KB local SRAM buffer
3-channel, 128bit AXI4 DMA Engine

DRAM 4-channel LPDDR3, 25.6 GB/s peak BW

5.2. Software Setup

We evaluate Euphrates under one popular mobile continuous
vision scenarios: object detection. In particular, we study a
state-of-the-art object detection CNN called YOLOv2 [25,26],
which achieves the best accuracy and performance among all
the object detectors. YOLOv2 requires over 3.4 TOPS com-
pute capability at 60 FPS, significantly exceeding the mobile
compute budget. For comparison purposes, we also evaluate a
scaled-down version of YOLOv2 called Tiny YOLO. At the
cost of 20% accuracy degradation [10], Tiny YOLO reduces
the compute requirement to 675 GOPS, which is within the
capability of our CNN accelerator.

We evaluate object detection using an in-house video
dataset. We could not use public object detection benchmarks
(e.g., Pascal VOC 2007 [9]) as they are mostly composed of
standalone images without temporal correlation as in real-time
video streams. We use the standard Intersect-over-Union (IoU)
score as the accuracy metric for object detection [17, 21].

6. Evaluation
Euphrates doubles the achieved FPS with 45% energy saving
at the cost of only 0.58% accuracy loss. Compared to the
conventional approach of reducing the CNN compute cost by
scaling down the network size, Euphrates achieves a higher
frame rate, lower energy consumption, and higher accuracy.

Accuracy Results Fig. 5a compares the average precision
(AP) between baseline YOLOv2 and Euphrates under different
extrapolation window sizes (EW-N, where N ranges from 2 to
32 in stride of powers of 2). For a comprehensive comparison,
we vary the IoU ratio from 0 (no overlap) to 1 (perfect overlap).
Each <x,y> point corresponds to the percentage of detections
(y) that are above a given IoU ratio (x). Overall, the AP
declines as the IoU ratio increases.

Replacing expensive NN inference with cheap motion ex-
trapolation has negligible accuracy loss. EW-2 and EW-4 both
achieve a success rate close to the baseline YOLOv2, repre-
sented by the close proximity of their corresponding curves in
Fig. 5a. Specifically, under an IoU of 0.5, which is commonly
regarded as an acceptable detection threshold [16], EW-2 loses
only 0.58% accuracy compared to the baseline YOLOv2.

5

80

60

40

20

0

Av
er

ag
e

P
re

ci
si

on
 (%

)

1.00.80.60.40.20.0

IoU Threshold

 YOLOv2
 EW-2
 EW-4
 EW-8
 EW-16
 EW-32
 Tiny YOLO

(a) Average precision comparison.

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
. E

ne
rg

y

60

48

36

24

12

0

FP
S

YOLO
v2

EW-2
EW-4

EW-8

EW-16

EW-32

EW-8@
CPU

Tin
yY

OLO

 Backend
 Memory
 Frontend

(b) Energy and FPS comparison.

70

60

50

40

30

20

10

0

Av
g.

 B
ill

io
n

O
ps

/F
ra

m
e

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
em

ory Traffic/Fram
e (G

B
)

YOLO
v2

EW-2
EW-4

EW-8

EW-16

EW-32

(c) Compute and memory comparison.

Fig. 5: Average precision, normalized energy consumption, and FPS comparisons between various object detection schemes. Energy is
broken-down into three main components: backend (CNN engine and motion controller), main memory, and frontend (sensor and ISP).

Energy and Performance The energy savings and FPS
improvements are significant. Fig. 5b shows the energy con-
sumptions of different mechanisms normalized to the baseline
YOLOv2. We also overlay the FPS results on the right y-axis.
The energy consumption is split into three parts: frontend
(sensor and ISP), main memory, and backend (CNN engine
and motion controller). The vision frontend is configured to
produce frames at a constant 60 FPS in this experiment. Thus,
the frontend energy is the same across different schemes.

The baseline YOLOv2 consumes the highest energy and can
only achieve about 17 FPS, which is far from real-time. As we
increase EW, the total energy consumption drops and the FPS
improves. Specifically, EW-2 reduces the total energy con-
sumption by 45% and improves the frame rate from 17 to 35;
EW-4 reduces the energy by 66% and achieves real-time frame
rate at 60 FPS. The frame rate caps at EW-4, limited by the
frontend. Extrapolating beyond eight consecutive frames have
higher accuracy loss with only marginal energy improvements.

The significant energy efficiency and performance improve-
ments come from two sources: relaxing the compute in the
backend and reducing the SoC memory traffic. Fig. 5c shows
the amount of arithmetic operations and SoC-level memory
traffic (both reads and writes) per frame under various Eu-
phrates settings. As EW increases, more expensive CNN
inferences are replaced with cheap extrapolations (Sec. 3.2),
resulting in significant energy savings. Euphrates also reduces
the amount of SoC memory traffic.This is because E-frames
access only the motion vector data, and thus avoid the huge
memory traffic induced by executing the CNNs (SRAM spills).

Finally, the second to last column in Fig. 5b shows the total
energy of EW-8 when extrapolation is performed on CPU.
EW-8 with CPU-based extrapolation consumes almost as high
energy as EW-4, essentially negating the benefits of extrap-
olation. This confirms that our architecture choice of using
a dedicated motion controller IP to achieve task autonomy is
important to realizing the full benefits in the vision pipeline.

Tiny YOLO Comparison One common way of reducing
energy consumption and improving FPS is to reduce the CNN
model complexity. For instance, Tiny YOLO uses only nine

of YOLOv2’s 24 convolutional layers, and thus has an 80%
MAC operations reduction.

However, we find that exploiting the temporal motion infor-
mation is a more effective approach to improve object detec-
tion efficiency than simply truncating a complex network. The
bottom curve in Fig. 5a shows the average precision of Tiny
YOLO. Although Tiny YOLO executes 20% of YOLOv2’s
MAC operations, its accuracy is even lower than EW-32,
whose computation requirement is only 3.2% of YOLOv2.
Meanwhile, Tiny YOLO consumes about 1.5 × energy at a
lower FPS compared to EW-32 as shown in Fig. 5b.

7. Conclusion

Delivering real-time continuous vision in an energy-efficient
manner is a tall order for mobile system design. To over-
come the energy-efficiency barrier, we must expand the re-
search horizon from individual accelerators toward holistically
co-designing different mobile SoC components. This paper
demonstrates one promising approach that leverages the tem-
poral motion information naturally produced by the vision
frontend (i.e., imaging) to reduce the compute demand of the
vision backend (i.e., object detection and tracking). Future
developments should look beyond motion data and expand the
scope to other on/off-chip components. We hope our work
serves the first step in a promising new direction of research.

References
[1] “Apple Motion Coprocessors.”

https://en.wikipedia.org/wiki/Apple_motion_coprocessors 4
[2] “Apple’s Neural Engine Infuses the iPhone with AI Smarts.”

https://www.wired.com/story/apples-neural-engine-infuses-the-
iphone-with-ai-smarts/ 2

[3] “ARM Mali Camera.” https:
//www.arm.com/products/graphics-and-multimedia/mali-camera 2

[4] “Hikvision Advanced Image Processing: Noise Reduction.”
http://oversea-download.hikvision.com/UploadFile/file/Hikvision_
Advanced_Image_Processing--Noise_Reduction.pdf 2

[5] “Jetson TX2 Module.” http:
//www.nvidia.com/object/embedded-systems-dev-kits-modules.html
5

[6] “MIPI Camera Serial Interface 2 (MIPI CSI-2).”
https://www.mipi.org/specifications/csi-2 2

6

https://en.wikipedia.org/wiki/Apple_motion_coprocessors
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.wired.com/story/apples-neural-engine-infuses-the-iphone-with-ai-smarts/
https://www.arm.com/products/graphics-and-multimedia/mali-camera
https://www.arm.com/products/graphics-and-multimedia/mali-camera
http://oversea-download.hikvision.com/UploadFile/file/Hikvision_Advanced_Image_Processing--Noise_Reduction.pdf
http://oversea-download.hikvision.com/UploadFile/file/Hikvision_Advanced_Image_Processing--Noise_Reduction.pdf
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
https://www.mipi.org/specifications/csi-2

[7] “Movidius Myriad X VPU Product Brief.”
https://uploads.movidius.com/1503874473-MyriadXVPU_
ProductBriefaug25.pdf 1

[8] “Second Version of HoloLens HPU will Incorporate AI Coprocessor
for Implementing DNNs.”
https://www.microsoft.com/en-us/research/blog/second-version-
hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/ 2

[9] “The PASCAL Visual Object Classes Challenge 2007.”
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ 5

[10] “YOLO: Real-Time Object Detection.”
https://pjreddie.com/darknet/yolo/ 5

[11] B. Barry, C. Brick, F. Connor, D. Donohoe, D. Moloney, R. Richmond,
M. O’Riordan, and V. Toma, “Always-on Vision Processing Unit for
Mobile Applications,” IEEE Micro, 2015. 1

[12] N. Chidambaram Nachiappan, P. Yedlapalli, N. Soundararajan, M. T.
Kandemir, A. Sivasubramaniam, and C. R. Das, “GemDroid: A
Framework to Evaluate Mobile Platforms,” 2014. 5

[13] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge
university press, 2000. 1

[14] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in Proc. of CVPR, 2005. 1

[15] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast Feature
Pyramids for Object Detection,” PAMI, 2014. 1

[16] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams,
J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes
Challenge: A Retrospective,” IJCV, 2015. 5

[17] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The PASCAL Visual Object Classes (VOC)
Challenge,” IJCV, 2009. 5

[18] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile CPU’s Rise to Power:
Quantifying the Impact of Generational Mobile CPU Design Trends
on Performance, Energy, and User Satisfaction,” in Proc. of HPCA,
2016. 1

[19] M. Jakubowski and G. Pastuszak, “Block-based Motion Estimation
Algorithms–A Survey,” Opto-Electronics Review, 2013. 2

[20] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust Video Denoising using Low
Rank Matrix Completion,” in Proc. of CVPR, 2010. 2

[21] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proc. of ECCV, 2014. 5

[22] C. Liu and W. T. Freeman, “A High-Quality Video Denoising
Algorithm based on Reliable Motion Estimation,” in Proc. of ECCV,
2010. 2

[23] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single Shot Multibox Detector,” in Proc. of ECCV,
2016. 1

[24] H. Nam and B. Han, “Learning Multi-Domain Convolutional Neural
Networks for Visual Tracking,” in Proc. of CVPR, 2016. 1

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection,” in Proc. of CVPR, 2016.
1, 5

[26] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
arXiv:1612.08242, 2016. 1, 5

[27] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
Real-time Object Detection with Region Proposal Networks,” in Proc.
of NIPS, 2015. 1

[28] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in Proc. of ICLR, 2014. 1

[29] P. Viola and M. J. Jones, “Robust Real-time Object Detection,” IJCV,
2004. 1

[30] J. Yan, Z. Lei, L. Wen, and S. Z. Li, “The Fastest Deformable Part
Model for Object Detection,” in Proc. of CVPR, 2014. 1

7

https://uploads.movidius.com/1503874473-MyriadXVPU_ProductBriefaug25.pdf
https://uploads.movidius.com/1503874473-MyriadXVPU_ProductBriefaug25.pdf
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
https://www.microsoft.com/en-us/research/blog/second-version-hololens-hpu-will-incorporate-ai-coprocessor-implementing-dnns/
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
https://pjreddie.com/darknet/yolo/

	Introduction
	Background and Motivation
	The Mobile Continuous Vision Pipeline
	Motion Estimation in ISPs
	Motion Estimation using Block Matching

	Motion-based Continuous Vision Algorithm
	Overview
	How to Extrapolate
	When to Extrapolate

	Architecture Support
	System Overview
	Augmenting the Vision Frontend
	Augmenting the Vision Backend

	Implementation and Experimental Setup
	Hardware Setup
	Software Setup

	Evaluation
	Conclusion

