
Scaling the Cascades: Interconnect-aware FPGA
implementation of Machine Learning problems

Ananda Samajdar2, Tushar Garg1, Tushar Krishna2, Nachiket Kapre1

1School of Electrical and Computer Engineering
University of Waterloo

Ontario, Canada
t3garg,nachiket@uwaterloo.ca

2School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, USA,
anandsamajdar,tkrishna3@gatech.edu

Abstract—DSP48s, BRAMs and URAMs in the Xilinx Ultra-
scale+ family support dedicated cascade interconnect for high
frequency, nearest-neighbor data movement using hard wiring
resources. We demonstrate how to leverage these interconnect
structures to effectively support data movement requirements
of dense machine learning (ML) workloads at URAM-limited
650 MHz frequency (714 MHz reported by Vivado). We refor-
mulate convolution and matrix-vector multiplication operations
to make effective use of cascade interconnect (1) in DSP48s
for supporting the common multiply-accumulate chains, and (2)
in BRAMs, and URAMs to exploit the data movement and
reuse patterns of ML workloads. The use of these dedicated
cascade interconnect are an alternative to Versal AI cores that
throw away FPGA flexibility in favor of rigid ASIC components
with unproven long-term value. Our 650 MHz operation on
the Xilinx VU37P UltraScale+ FPGA is competitive with the
720 MHz state-of-the-art Xilinx SuperTile design. We use 100%
URAM288s, 95% DSP48s, and 77% BRAM in contrast to the
100% URAM288s, 56% DSP48, and 40% BRAM usage of the
Xilinx SuperTile array. As a result, we deliver a ≈7× superior
GoogLeNet inference latency while sacrificing 25% of inference
throughput than their design. For MLPerf benchmarks we
note inference latencies between 3µs–1.89 ms with corresponding
throughputs between 528–260K inf/s.

I. INTRODUCTION

Machine learning (ML) acceleration is of great interest to
the FPGA community today. Modern FPGAs support massive
fine-grained parallelism thanks to programmability, customiz-
ability, and control over hardware organization needed to
process these workloads. The flexibility and abundance of
FPGAs in the Microsoft Azure datacenter has led to accel-
erator architectures such as the Brainwave [6] that distribute
the ML workloads across hundreds of FPGAs. Xilinx has
developed a highly-optimized 720 MHz SuperTile [29], [30]
systolic computing overlay for acceleration of neural networks
using off-the-shelf Xilinx UltraScale+[15], [28] FPGAs, as
well as a new series of Versal [32] FPGA architectures that
support novel hardened features such as dedicated AI engines
and custom interconnect and data movement blocks. ML
computations lend themselves well to parallelization but are
characterized by massive compute demands, high memory
storage and bandwidth requirements, and a quixotic mix of
communication requirements.

address
data

Port
B

Port
A

Port
B

Port
A

data dataaddress
data PCIN

BCIN
ACIN

PCOUT

BCOUT

ACOUT

URAM

BRAM

BRAM

BRAM

BRAM

DSP48

DSP48

DSP48

DSP48

PCIN
BCIN

ACIN

PCOUT

BCOUT

ACOUT

DSP48

DSP48

DSP48

DSP48

Fig. 1: High-level view of of cascade connections between
DSP48, RAMB18, and URAM288 blocks.

The key idea explored in this paper is the explicit use of ded-
icated interconnect structures available on Xilinx UltraScale+
FPGAs to deliver 650 MHz operation while utilizing 100%
URAMs, 95% DSPs, and 77% BRAMs. Contemporary FPGA
ML acceleration research focuses on arithmetic enhance-
ments [4] while we focus on high-frequency data movement
optimizations. In Figure 1, we show a cartoon representation
of the cascade structures used in this paper. The DSP48
arithmetic blocks provide the well-known adder chain cascade
structure [7] to accumulate sums, while also providing an
opportunity to shift input operands using dedicated wiring as
well. The BRAM and URAM memory storage elements can be
chained together to create larger communication networks [8]
as well as, deeper, more flexible memory structures. Apart
from providing the cascade wiring, Xilinx also makes them
programmable: we can configure their use either statically
at compile-time, or in some cases dynamically at runtime.
With the programmability features, the wiring can be purposed
to support the particular data movement and reuse pattern
available in the ML workloads. This mapping strategy allows
offloading bulk of the communication demands away from
the soft bit-level programmable interconnect onto hard wiring
resources. It also makes it possible to develop high-speed
FPGA layouts that keep soft interconnect utilization low, and
helps the design operate at component maximum frequency.



x +
A

B

BCINACIN

BCOUTACOUT

PCIN

PCOUTStatic
Config

Dynamic
Config

P

(a) DSP48 cascade (891 MHz)

Memory
Core

DIN(A|B)

CASDIN(A|B)

CASDOUT(A|B)

Dynamic
Config

DOUT(A|B)

(b) RAMB18 cascade (825 MHz))

Memory
Core

DIN(A|B)

CAS_IN_DIN(A|B)

CAS_OUT_DOUT(A|B)
Static
Config

DOUT(A|B)

ADDR(A|B)

CAS_IN_ADDR(A|B)

CAS_OUT_DIN(A|B)

CAS_OUT_ADDR(A|B)

CAS_IN_DOUT(A|B)

(c) URAM288 cascade (650 MHz)

Fig. 2: Hard Cascade structures embedded in Xilinx hard blocks.

The key contributions of this work are:
1. We develop Xilinx UltraScale+ FPGA overlay accelera-

tors for ML workloads targeting convolution and matrix-
vector multiplication as the key building blocks.

2. We show how to directly exploit the dedicated intercon-
nect features of the DSP48, BRAM, and URAM com-
ponents to map unique data reuse and data movement
requirements of ML workloads.

3. We evaluate the efficiency and performance of our archi-
tecture across the standard MLPerf [1] benchmark set.

4. We deliver URAM-limited 650 MHz operation on chip-
spanning designs mapped to the Xilinx VU37P FPGA using
a formulaic floorplanning of the hard blocks like URAMs,
DSPs, and BRAMs and resulting short interconnect lengths.

II. BACKGROUND

In this section we will discuss two key computation libraries
in modern ML workloads and review available features of the
cascade interconnect on the Xilinx UltraScale+ family.

A. Compute Libraries in ML Workloads

Convolutions and Matrix-Vector multiplications are two key
basic linear algebra (BLAS) routines used pervasively in mod-
ern ML workloads. A convolution operation slides a “kernel”
of weights over an image. Each output is a dot product of
the kernel and the input pixels covered by the kernel. 2D
convolutions are used extensively in deep networks performing
image classification. A matrix-vector multiplication is the
key operation in RNNs and MLPs. Many CNN accelerators
directly implement convolutions to exploit input/filter reuse
during the sliding window operation, unlike GPUs [26] that
lower convolutions to matrix-matrix multiplications through
extensive replication of data.

B. Data Reuse within DNN Accelerators

For the uninitiated, ML accelerators implemented either as
ASICs or FPGA overlays comprise of a collection of pro-
cessing elements (PE) to extract parallelism. Each PE can be
thought of a small computing engine with some near memory.
Variation in mapping strategies [5] of the ML workloads over
the accelerator results in data reuse and significantly distinct
data access patterns, which in turn affect, performance, power
and memory footprint. Such affects are particularly accentu-
ated in the case of deep neural networks. A careful mapping of

computing that takes into account the underlying reuse patterns
can radically improve the performance on a given device.
For our work, we adopt the “weight stationary” approach
for exploiting row-streaming reuse during convolution phases,
and the “input stationary” strategy for multicasting the vectors
during matrix-vector multiplication phases.

C. Dedicated Cascade Interconnect
The Xilinx UltraScale+ device family [15], [28] integrates

thousands of hard resources such as DSP and RAM blocks in
a columnar arrangement. We enumerate the salient features of
the different blocks below:
• DSP48 (Figure 2a): These components primarily support

arithmetic integer operations including 27×18 multiplica-
tion, and 48b accumulation. A unique feature of the Xilinx
DSPs is that they expose configurability within the DSP
block to the FPGA logic fabric for runtime control. A
developer may not only choose the kind of operation being
performed in the DSP block, but also change data routing
and data movement pathways within the DSP. The key
feature of the DSP48 blocks we wish to exploit in this
paper is the ability of multiple DSP blocks to cascade
together in a chain-like configuration. This is supported
either for performing accumulation of a series of partial
products (adder cascade), or for permitting efficient data
reuse for certain inputs (input cascade). While the adder
cascade is programmable dynamically, the input cascade is
only statically configured.
• RAMB18 (Figure 2b): Modern FPGAs provide access to

thousands of small distributed on-chip memories that have
configurable port widths, and other statically configurable
operating modes. A particularly unique feature of the Xilinx
UltraScale FPGAs is the presence of nearest-neighbor, dy-
namically cascadable connections for the two data ports in
the same direction as the DSP cascades (uphill). This allows
the developer to construct deeper memory structures, cas-
caded FIFOs, and other user-configurable dataflow patterns.
The multiplexers controlling dataflow are only available on
the data ports.
• URAM288 (Figure 2c): UltraScale+ FPGAs introduced

higher density SRAM blocks with 288kb capacity that
sacrifice port width flexibility for lower cost. While the
port aspect ratios are not programmable, there is still a
column-spanning cascade network for the data ports along



DSP48 DSP48 DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+

x

+

x

+
DSP48

x

+

RAMB
18 (C)

RAMB
18 (B)

RAMB
18 (A)

RAMB
18

(Kern)

URAM
288

(Input)

from previous 
URAM

to next 
URAM

URAM
288
(Output)

+

Channel j

Row i+2 Row i+1 Row i

Kernel j,k

Channel k

DSP48
P cascade

DSP48
A cascade

DSP48
B cascade

RAMB18
cascade

URAM288
cascade

General Purpose
Interconnect

Row Streaming

Pixel Streaming Pixel Streaming Pixel Streaming

C
ha

nn
el

 S
tre

am
in

g

(a) Design of a 3×3 convolution block. DSPs configured in SIMD=2 mode, a
set of 8b weights are shifted into the B cascade. One stream of 2×8b = 16b
data streamed into the A cascade from different rows. BRAM cascades also
configured to exploit row reuse.

x

+

W2

I06

x

+

W1

I04

x

+

W0

I02I05 I03

I05*
W2

I03*
W1

I01*
W0

I02*W1 +I03*W2I04*W2 I00*W0 + I01*W1
+I02*W2

Cycle 7

x

+

W2

I07

x

+

W1

I05

x

+

W0

I03I06 I04

I06*
W2

I04*
W1

I02*
W0

I03*W1 +I04*W2I05*W2 I01*W0 + I02*W1
+I03*W2

Cycle 8

x

+

W2

I08

x

+

W1

I06

x

+

W0

I04I07 I05

I07*
W2

I05*
W1

I03*
W0

I04*W1 +I05*W2I06*W2 I02*W0 + I03*W1
+I04*W2

Cycle 9

(b) Systolic DSP48 dataflow for 1×3 filter slice using 3 DSP48s.

Fig. 3: Implementing 3×3 Convolution built using a com-
bination of DSPs, BRAMs, and URAMs and hard cascade
interconnect in systolic mode.

with address. This allows the developer to address any
location in any URAM block in a column with ease. In
contrast to BRAM cascades, the URAM cascade network
separates the read and write ports into independent cascades.
Importantly, it provides cascadeability for data, address, as
well as control signals.

III. HIGH-FREQUENCY FPGA CASCADES

The architecture of FPGA-based ML accelerator in this
paper exploits (1) the resource balance constraints of the
device, and (2) unique cascade interconnect features of the
UltraScale+ family. In this section, we first discuss the build-
ing blocks for Convolution and Matrix-Vector multiplication
blocks and show how to map these over the cascades to create
repeating tiles that balance capacity, bandwidth, and precision.
After that, we provide an overview of the design space of
possible implementations. Pooling operations are mapped onto
the same resources as the Convolution engines, while ReLU
softmax operations are provided as bypassable operators prior
to data commit.

A. Building Block: Convolution

We present a weight-stationary implementation of convolu-
tion that takes advantage of data reuse patterns in convolution
without transforming it to memory-hungry matrix-matrix op-
erations as discussed earlier in Section II-A.

For our accelerator template, shown in Figure 3a, we take
a 3×3 convolution and parallelize the inner convolution loops
across a series of nine DSP48 blocks, four BRAMs, and
two URAMs.The nine multiplications and eight additions are
mapped to the nine DSPs in a sequential chain fashion. Each

DSP48 computes the result of multiplying a weight with
a corresponding input value and computes the partial sum
of products. We operate the DSP in a SIMD=2 mode, i.e.,
we configure the 16b multiply and add datapath into two
parallel 8b operations to enhance throughput. The DSP48 P
cascade (Figure 2a) is used to accumulate the result of nine
multiplication results.

We show snapshots of the internal DSP48 state in Figure 3b
after cycle 7, 8 and 9. In the first six cycles, we initialize the
pipelines from their empty state. We pipeline output of each
multiply and add operation and orchestrate the input pixel
shifting using a 2-stage pipeline to align data for systolic
operation. The nine weights of a kernel are loaded into the
B cascade chain of the DSP48 block and locked in place.
The kernel BRAM store multiple sets of kernel weights that
are accessed infrequently. The inputs are streamed over the A
chain of the DSP48 blocks and split into three segments of
length three. Using systolic pipeline mode of the DSP48 input
chains, we are able to stream in a row and after an initial
latency generate a stream of output pixels.

INPUT
URAM

BRAM
Kern

BRAM
C

BRAM
B

BRAM
A

OUTPUT
URAM

I10
I11
I12
I13
…

I00
I01
I02
I03
…

W0
W1
…

I00,I01,…
I10,I11,…
I20,I21,…
I30,I31,…
I40,I41,…

3x3 Convolution
Nine DSP48 chain

W…

I20
I21
I22
I23
…

Initial State After First Output Row Processed

INPUT
URAM

BRAM
Kern

BRAM
C

BRAM
B

BRAM
A

OUTPUT
URAM

I30
I31
I32
I33
…

I10
I11
I12
I13
…

I00
I01
I02
I03
…

W0
W1
…

I00,I01,…
I10,I11,…
I20,I21,…
I30,I31,…
I40,I41,…

O00,O01,…

3x3 Convolution
Nine DSP48 chain

W…

I20
I21
I22
I23
…

I20
I21
I22
I23
…

I10
I11
I12
I13
…

Fig. 4: Data movement between URAMs and BRAMs to
support 3×3 convolution while exploiting row reuse. Row
streaming over BRAM cascade overlapped with DSP compute.

Each segment is fed by a single BRAM thereby requiring
three BRAMs to stream row pixels into the DSP48 chain.
We achieve input row data reuse by copying the row data
into the next BRAM as its been read out. Thus, in double-
buffered fashion, the row data stages its way through the three
BRAMs feeding into the three A segments. This is illustrated
via snapshots of the row BRAMs in Figure 4. Three rows are
fed in parallel to the Convolution Block while simultaneously
being shifted into the next BRAM via the hard cascades. New
rows are streamed from the URAM and one row is updated
in the output URAM.

B. Building Block: Matrix-Vector Multiply

Unlike convolution, matrix-vector computations have low
arithmetic intensity and require blocking to support diverging
problem sizes across layers of the network.

Our accelerator design, shown in Figure 5, parallelizes
the computation across a series of nine DSP48 blocks. The
multiply-accumulate P cascade chain is identical to the one
used in the convolution block with the exception of SIMD=1
mode configuration. Nine BRAMs feed 8b data to the adjacent
DSP48 blocks to provide the vector input. The URAMs



DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+
DSP48

x

+

RAMB
18

RAMB
18

RAMB
18

RAMB
18

RAMB
18

RAMB
18

RAMB
18

RAMB
18

URAM
288

RAMB
18

+

Vec i+8 Vec i+7 Vec i+6 Vec i+5 Vec i+4 Vec i+3 Vec i+2 Vec i+1

DSP48
P cascade

RAMB18
cascade

URAM288
cascade

from previous 
URAM

to next 
URAM

Matrix
Partial Result

Vector

DSP48

x

+

RAMB
18

Vec i
M

at
rix

 S
tre

am
in

g
Vector Streaming

General Purpose
Interconnect

Fig. 5: Design of a Length-9 dot product unit that can per-
form URAM-capacity-limited matrix-vector multiplications.
The DSP48 chain is configured with SIMD=1 mode to perform
a matrix-vector product of 8b inputs. A chain of 9 DSPs
is configured to perform a length-9 dot products. URAM
distributes 9 chunks of 8b values from the matrix in a row-wise
fashion. The bank of 9 BRAMs distributes 8b values.

support 72b port widths, which are sliced across the nine
DSP48s to distribute the matrix entries. The final result is
accumulated in the result BRAM. The result is distributed
across the FPGA via BRAM cascades so the output vector
can be fanned out in preparation for the next computation.

C. Scaling and Tiling

The final FPGA organization that uses these building blocks
for tiling must consider the unique DSP-BRAM-URAM ca-
pacity and bandwidth balance available on the UltraScale+
device family. We must also consider the deep network ar-
chitecture as layer connectivity must be considered to ensure
data movement between layers in handled properly. The Xilinx
VU37P FPGA enforces a resource balance of 1 URAM288,
4.2 BRAM18s, and 9.4 DSP48s. Additionally the URAM can
supply 72b data, while the RAMB18s can supply 18b data in
True Dual Port (TDP) mode. The DSP48 blocks can consume
inputs to feed the 27×18b multiplier and can be configured
in SIMD=2 mode to compute two 8×8 multiplications with a
common input.

We design repeating tiles to satisfy the resource-balance,
bandwidth, and precision constraints of the FPGA device:
• The Convolution Tile: As shown in Figure 6a, each

URAM supplies input channel data to two convolution
blocks instead of one. The URAM has enough bandwidth to
satisfy the needs of both blocks and helps create a repeating
tile with 2 URAMs, 8 BRAMs, and 18 DSPs which is well
within the VU37P balance of 2 URAMs, 8.4 BRAMs, and
18.8 DSPs. In addition, the URAM read/write cascades are
employed to move the input channels across the different
convolution tiles. This is necessary to support the all-to-
all communication pattern inherent in an implementation of
a convolution layer – here, each input channel convolves
with a unique kernel for each output channel combination.
We stream the input channel into a convolution block to
update a particular output channel which is resident in
the output URAM of that block. Simultaneously, the input

URAM
cascade

B B B

3x3 Conv. 
Block

URAM
288

URAM
288

(Input
Channel)

(Output
Channel)

3x3 Conv. 
Block

B B B BB

(Input Rows) (Kernel)

B B B

3x3 Conv. 
Block

URAM
288

URAM
288

(Input
Channel)

(Output
Channel)

3x3 Conv. 
Block

B B B BB

B B B

3x3 Conv. 
Block

URAM
288

URAM
288

(Input
Channel)

(Output
Channel)

3x3 Conv. 
Block

B B B BB

B B B

3x3 Conv. 
Block

URAM
288

URAM
288

(Input
Channel)

(Output
Channel)

3x3 Conv. 
Block

B B B BB

(a) 3×3 Convolution Tiles

URAM
cascade

URAM
288 RAMB

18
Matrix-Vector

Block(Matrix
Rows) (Partial Result 

Vector)
URAM

288 RAMB
18

Matrix-Vector
Block(Matrix

Rows)

B B B B (Input Vector)

URAM
288 RAMB

18
Matrix-Vector

Block(Matrix
Rows)

URAM
288 RAMB

18
Matrix-Vector

Block(Matrix
Rows)

9

(Partial Result 
Vector)

(Partial Result 
Vector)

(Partial Result 
Vector)

(b) Matrix-Vector Multiply Tiles

Fig. 6: Repeating tiles of the ML accelerator that obey
Xilinx VU37P resource, capacity, bandwidth constraints: Two
Convolution tiles sharing the weight memory, while 4 tiles of
the Matrix-Vector multiplication block share the vector RAM.

channel is the shifted into the next URAM for the next
output channel computation using the dedicated URAM
cascade wiring. This all-to-all pattern is thus implemented
by shifting data along a ring configured out of the URAM
cascade structures.
• Matrix-Vector Multiplication Tile: In Figure 6b, we see

that, we again need to generate a resource, bandwidth, and
precision aware repeating tile. In this scenario, each URAM
with its 72b port distributes matrix data to nine DSP48s in
8b chunks. We configure nine BRAMs to supply 8b vector
data in parallel to the nine DSP48 blocks. Since the vector
is common across all dot product evaluations, we fanout
each BRAM output to the different copies of the Matrix-
Vector multiplication blocks. Thus, each repeating tile has
4 URAMs, 9 BRAMs (input) + 4 BRAMs (output), 36
DSP48s which is well within the VU37P resource balance
of 4 URAMs, 16.8 BRAMs, and 37.6 DSPs. If multiple
FC layers are to be sequenced together, the resulting partial
vector outputs stored in the output BRAMs are then shifted
in a ring-like fashion across the multiple tiles to replicate
the output vector across all tiles. This will the allow the next
FC layer computation to proceed in an identical fashion.

D. System Design Strategy

Finally, we determine the use of Space-Division multiplex-
ing as the high-level parallelization strategy for supporting
the different layer configurations on the same FPGA. We
can partition the FPGA statically into two regions: one for
convolutions, and another for matrix-vector multiplication. We
can calibrate the balance based on the specific requirements
of the deep network architecture (GoogLeNet splits across
80% convolution, and 20% matrix multiplication). To limit
resource idling at the cost of inference latency, we (1) replicate
the design to evaluate multiple images in parallel, or (2)
decompose the FPGA into subregions devoted to a subset
of layers of a CNN. Unlike the Xilinx SuperTile [29], [30]



overlay, our design generalizes to a range of benchmarks
beyond GoogLeNet. Reconfiguration was ruled out due to an
exorbitant 140 ms of programming time [31].

E. Overall FPGA Architecture

The Xilinx VU37P FPGA supports HBM interfaces with
32× AXI ports with 256b 450 MHz rates feeding into the
FPGA core. This is used for initial loading of the on-
chip memory contents and is not needed therafter for all
benchmarks (except Transformer, see Table I later) as the
weights and worst-case activation state is <35 MB. . It also
includes 960 URAM288 blocks, 9024 DSP48 slices, and 4032
RAMB18k blocks. Our architecture can support 960 comput-
ing blocks configured as 480 3×3 Convolution tiles, or 240
Length-9 Matrix-Vector Multiplication tiles. The Convolution
tiles perform 2 3×3 convolutions across 18 DSP48 blocks
configured in SIMD=2 mode thereby processing 36 8b×8b
multiplications and 36 24b accumulations per cycle. The
Matrix-Vector Multiplication tile can process four dot products
of length 9 to yield a throughput of 36 8b×8b multiplications
and 36 48b accumulations per cycle.

IV. METHODOLOGY

A. FPGA Mapping

We describe our designs directly in RTL component-level
instantiations of DSP48, RAMB18, and URAM288 blocks and
associated controllers for orchestrating data movement and
control flow for convolutions and matrix-vector multiplica-
tion. We use Vivado 2018.2 for our experiments and use a
tight 1 ns timing constraint for the CAD tools. We generate
explicit physical location mapping for the DSP, and RAM
components, and supply customizable pipelining to enforce
the high-frequency design constraint. We measure the resulting
frequency of the mapped design, and interconnect utilization
metrics to quantify the extent of wiring reduction. We map our
designs to the Xilinx UltraScale+ VU37P FPGA xcvu37p-3.

B. Performance Analysis of MLPerf Benchmarks

We build a cycle-accurate model of our design using an
open-source CNN accelerator simulator from ARM called
SCALE-Sim [20]. We model our system as a 9×1920 systolic
array for Convolution and 9×960 array for Matrix-Vector
Multiplication. Each grouping of 9 DSP48s in each chain
are modeled as 1D systolic chains. We are able to model
a variety of dataflows including the “weight-stationary” and
“input-stationary” models for our design. For convolutions,
our modeling framework includes support for parallelization
of partial sum generation for an output channel. This feature
can be added to our RTL design with a minor modification
requiring an adder chain across multiple convolution blocks.

We run DNNs from MLPerf [1] to evaluate the performance
of our cascade design along with GoogLeNet. We validate
the cycle counts for various layers in GoogLeNet against
that reported by our RTL simulation and SCALE-Sim runs.
In Table I, we tabulate the peak memory usage footprint of
MLPerf workloads that includes sum of all weights (filters

TABLE I: MLPerf and GoogLeNet benchmark characteristics.

Topology Operation Count Storage (bytes)

(MLPerf) All Conv MM
∑

Wts. Activ.

AlphaGoZero 352M 352M 353K 1.5M 92K
DeepSpeech2 1.7G 1.7G 74K 355K 6.5M
FasterRCNN 3.5G 1.6G 1.8G 13M 802K
NCF 11M 0 11M 11M 138K
Resnet50 3.4G 1.6G 1.8G 25M 802K
Sentimental 210M 0 210M 172K 30.7M

GoogLeNet 1.3G 1.3G 46M 6.8M 200K

and matrices) as well the worst-case activation layer storage
costs. With the exception of Transformer benchmark, we never
exceed the 35 MB capacity of the 960 URAMs on the VU37P.

V. EVALUATION

We now discuss the implementation results of our
interconnect-aware mapping of ML problems on Xilinx Ul-
traScale+ VU37P FPGA. We first highlight the frequency and
utilization of our proposed cascade design against one where
the data movement is directly mapped over the soft fabric
instead along with related work. We then discuss performance
results for the MLPerf benchmark set for our platform and
use GoogLeNet benchmark for comparison against Xilinx
SuperTile.

A. Frequency Trends

In Table II, we show the LUT and FF cost of the various
design configurations along with frequency and interconnect
utilization data. As expected, our careful bottom-up design
methodology delivers high performance outcomes with the
worst clock period of ≈ 1.5 ns. When considering the use of
cascaded interconnect structures we observe a 15% reduction
in clock period and 20–30% reduction in FF use. Convolution
designs do not show much clock frequency improvements as
our designs are extensively pipelined even without cascading
features. A key measurement is the interconnect utilization
drop of 16–33%. This is directly attributable to the use of
cascade rather than general purpose interconnect for data
movement.

We show the effect of cascading on network congestion
through the histogram plots in Figure 7. It is clear that the
cascaded design uses fewer congested routes than the non-
cascaded design. This gap is stark for Convolution design
with as many as 20% more routes in the lowest congestion
bin. At the far end of the spectrum in the highly congested
bins, we have 5–10× fewer routes for the cascaded design
configuration.

We show chip-spanning FPGA layouts of our Convolution
and Matrix-Vector Multiplication designs in Figure 8. The
regularity of the connectivity, and the use of nearest-neighbour
cascade resources are visible in the layout. Complete FPGA
mapping takes ≈6–7 hours on Vivado 2018.2 for these designs
and is able to get close to the timing target of a ns. This easily
outperforms the 250 MHz operating frequency of Brainwave
design. Our implementation frequency is limited purely by



Design Size LUTs FFs Clk (ns) Net Util. (%)

Fabric Cascade % Fabric Cascade % Fabric Cascade % Fabric Cascade %

Convolution Block 325 327 0% 1.3K 1K 30% 0.9 0.9 0% 0.01 0.01 0%
Tile (2 blocks) 424 435 -2% 1.9K 1.5K 26% 0.9 1 -10% 0.02 0.02 0%
Full-Chip 20.9K 21.1K -1% 95.3K 72.1K 32% 1.4 1.4 0% 12.8 9.6 33%

Matrix-Vector Block 98 98 0% 775 688 12% 1 0.9 10% 0.01 0.01 0%
Multiplication Tile (4 blocks) 375 374 0% 2.3K 1.9K 21% 1.1 0.9 22% 0.04 0.05 -8%

Full-Chip 90.2K 90.2K 0% 56.8K 46.6K 21% 1.5 1.3 15% 9.3 8 16%

TABLE II: Resource and Frequency Trends for Convolution and Matrix Vector Multiplication blocks, tiles and full-chip layouts.

25K

50K

75K

0 20 40 60 80
Congestion (%)

R
ou

te
 C

ou
nt

Cascade
No Cascade

(a) Convolution Congestion

10K

20K

30K

0 20 40 60 80
Congestion (%)

R
ou

te
 C

ou
nt

Cascade
No Cascade

(b) Matrix-Vector Congestion

Fig. 7: Histogram of congestion of routes for Full-Chip
Convolution and Matrix-Vector Multiplication Hardware

(a) Convolution Layout (b) Matrix-Vector Layout

Fig. 8: Full chip VU37P layout of Convolution and Matrix-
Vector Multiplication Hardware

the hard resource constraints than our design architecture. We
ran an experiment by removing the URAM operations from
our netlist and found the peak frequency achievable is 800–
900 MHz in agreement with the limits of the DSP and BRAM
components.

When compared to related work, our 650 MHz clock is
within 70 MHz of the state-of-the-art 720 MHz Xilinx Super-
Tile [29], [30] design, and much faster than other contempo-
rary designs as shown in Figure 9. While Xilinx SuperTile
only uses 56% of the DSP48 blocks, we use 95% of our
DSP48 resources delivering an effective throughput that is
100%
56% × 650MHz

720MHz=1.6× better. Brainwave [6] operates between
225–500 MHz on the Stratix V–Stratix 10 silicon and is
constrained by the memory controller interfacing speeds. In
contrast, we operate like SuperTile by keeping weights and
activations fully onchip in URAM288s and loading only once
at the start.

zh
an

gF
PG

A
20

15
[3

3]
su

da
FP

G
A

20
16

[2
3]

qi
uF

PG
A

20
16

[1
8]

su
da

FP
G

A
20

16
[2

3]
ra

hm
an

D
A

T
E

20
16

[1
9]

zh
an

gI
SL

PE
D

20
16

[3
5]

m
aF

PL
20

16
[1

4]
liF

PL
20

16
[1

0]
al

w
an

iM
IC

R
O

20
16

[3
]

liA
R

X
IV

20
16

[9
]

ve
ni

er
is

FC
C

M
20

16
[2

4]
sh

ar
m

aM
IC

R
O

20
16

[2
1]

sh
en

FP
L

20
16

[2
2]

zh
an

gF
PG

A
20

17
[3

6]
zh

an
gF

PG
A

20
17

[3
6]

nu
rv

ita
dh

iF
PG

A
20

17
[1

7]
m

aF
PG

A
20

17
[1

3]
w

ei
D

A
C

20
17

[2
7]

m
ot

am
ed

iT
O

M
M

20
17

[1
6]

m
ot

am
ed

iT
O

M
M

20
17

[1
6]

m
aF

PL
20

17
[1

2]
m

aF
PL

20
17

[1
2]

liu
T

R
E

T
S2

01
7[

11
]

ve
ni

er
is

FP
L

20
17

[2
5]

ab
de

lo
ua

ha
bE

SL
20

17
[2

]
m

sr
IS

C
A

20
18

[6
]

m
sr

IS
C

A
20

18
[6

]
m

sr
IS

C
A

20
18

[6
]

m
aF

PL
20

17
[1

2]
m

aF
PL

20
17

[1
2]

w
uF

PL
20

17
[2

9]
zh

an
gT

C
A

D
IC

S2
01

8[
34

]
zh

an
gT

C
A

D
IC

S2
01

8[
34

]
w

uF
PG

A
20

19
[3

0]
T

hi
s

W
or

k

0

200

400

600

800 SuperTile[30]
BrainWave[6]

Us

Fr
eq

ue
nc

y
(M

H
z)

Fig. 9: Maximum Achieved Frequency of FPGA ML Accel-
erators over the past few years. Xilinx SuperTile [30] design
has the highest 720 MHz fmax, and we operate at 650 MHz.
TABLE III: Xilinx VU37P FPGA inference latency (ms) and
throughput (inf/s) for MLPerf benchmarks and GoogLeNet.

Topology Ratio Cycles Time Tput.
(MLPerf) (Conv:MM) (ms) (inference/s)

AlphaGoZero 90:10 60K 0.09 10K
DeepSpeech2 60:40 1.2M 1.89 528
FasterRCNN 30:70 903K 1.38 719
NCF 0:100 2.4K 0.003 260K
Resnet50 30:70 848K 1.3 766
Sentimental 100:0 24K 0.037 27K

GoogLeNet (Us) 70:30 261K 0.40 2.4K
GoogLeNet - - 3.3 3K
(SuperTile [30])

B. Performance Trends

First, we tabulate the inference latency and throughput
results in Table III. We see runtimes <2 ms across all bench-
marks in the MLPerf set. In particular, we highlight the
runtime of GoogLeNet at 0.4 ms which outperforms the 3.3 ms
latency of the Xilinx SuperTile [30] design on the VCU1525
board with the VU9P-2 FPGA card (≈30% fewer DSP48s and
10% more BRAMs and identical URAM counts compared
to VU37P FPGA). Our design uses almost all the DPS48s
rather than the 56% of the SuperTile design, and also operates
everything at the 650 MHz identical clock rather than half-
rate RAM speeds of SuperTile. When considering throughput,
the SuperTile array offers an impressive 3K images/sec of
processing capacity. Our design can deliver a peak throughput



●

●●●

●●●

●●

0.25

0.50

0.75

1.00

10
:9

0

20
:8

0

30
:7

0

40
:6

0

50
:5

0

60
:4

0

70
:3

0

80
:2

0

90
:1

0

Space Division Multiplexing (Conv:MM)

R
el

at
iv

e 
In

fe
re

nc
e 

La
te

nc
y

● AlphaGoZero

DeepSpeech2

FasterRCNN

Googlenet

NCF

Resnet50

Sentimental

Fig. 10: Optimizing resource allocation for MLPerf workloads.

●

0.00

0.25

0.50

0.75

1.00

10
:9

0

20
:8

0

30
:7

0

40
:6

0

50
:5

0

60
:4

0

70
:3

0

80
:2

0

90
:1

0

Space Division Multiplexing
 (Conv:MM)

O
pe

ra
tio

n 
C

ou
nt

 R
at

io
 (

C
on

v:
C

on
v+

M
M

)

● AlphaGoZero

DeepSpeech2

FasterRCNN

Googlenet

NCF

Resnet50

Sentimental

Fig. 11: Correlating MLPerf benchmark characteristics to
Space Division Multiplexing arrangement.

of 2.4K images/sec which is 25% lower than SuperTile.
The Xilinx design maximizes device utilization by pipelining
execution across layers with three identical copies of the
design, each with a chain of four processors sized differently
and working on subset of the DNN layers. This sacrifices
latency but improves throughput by allowing each processor to
maximize device utilization. In contrast to the 95% utilization
achieved by SuperTile, we only achieve 50% utilization but
deliver superior inference latency.

In Figure 10, we show the benefits of systematic resource
allocation of the FPGA to the different layers of the neural
network. We divide resources to convolution:matrix-vector
portions (the x-axis ratio shown in Figure 10) of the applica-
tion keeping overall FPGA design area at 100%. Our current
goal is to optimize for inference latency, and the particular
balance of resources sacrifices some throughput to deliver su-
perior inference latency outcomes. The resource balance at the
runtime minimum point matches the ratio of work performed
in the Convolution and Matrix-Vector Multiplication phases
as indicated in Table I. Resnet50 and FasterRCNN workloads
shows a tradeoff that suggests best performance in the 30:70
resource division ratio. Rest of the workloads end up preferring
a solution that is on either ends of the resource balance scale.

Finally, in Figure 11, we show a strong correlation between
the problem requirements of the MLPerf benchmarks and
the division of hardware resources to Convolution or Matrix-
Vector multiplication tiles. Our optimization shows that there

is a clean transition between the use of Convolution to Matrix-
Vector multiplication hardware allowing us to stream the
images through the chip.

VI. LESSONS

Based on our study, we identify the following suggestions
for future ML-friendly FPGA designs:
1. URAM Bandwidth Balance: A 2× improvement in
URAM memory bandwidth from each URAM will help
address the memory bandwidth bottleneck for the matrix-
vector multiplication phase of the computation.

2. Dynamic Programmability: For the Xilinx DSP48s, the
cascades on the AB inputs, fracturing modes, and URAM
cascades remain stubbornly statically configurable. This
forces a designed to lock down data movement patterns at
compile time and tailored uniquely for either convolution or
matrix-vector multiply phases which makes a unified full-
chip design is difficult.

3. Impact of Xilinx Versal FPGA: As stated earlier, we
propose a closer look at existing hard interconnect structures
within the FPGA fabric rather than embracing rigid ASIC-
like computing elements targeting only the AI application
domain. This departure also imposes a high design cost
on the developer through the adoption of a mixed RTL
and C/C++ or VLIW-assembly programming. The Versal
system-level hard NoC does not address the intra-accelerator
data movement requirements of computing workloads.

VII. CONCLUSIONS

This paper demonstrates the potential of mapping DNN data
movements over cascade interconnect on the Xilinx Ultra-
Scale+ FPGA family. Our high-performance design can op-
erate at a URAM-limited 650 MHz which compares favorably
to the 720 MHz Xilinx SuperTile array, while outperforming it
by 1.6× on raw DSP48 throughput. For GoogLeNet we deliver
≈7× superior inference latency but 30% lower inference
throughput over the SuperTile design. MLPerf benchmarks
operate at inference latencies of 3µs–1.89 ms and throughputs
of 528–260K inf/s. Our design uses 30% fewer registers to get
up to 12% faster clock frequencies while requiring 10–30%
less interconnect than designs ignoring the cascade feature.

Source Code:
https://git.uwaterloo.ca/watcag-public/fpga-cascades-scalesim
https://git.uwaterloo.ca/watcag-public/fpga-cascades-rtl

REFERENCES

[1] Mlperf: Mlperf benchmark suite. https://github.com/mlperf, 2018.
[2] Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, Cédric Bourrasset,

and François Berry. Tactics to directly map cnn graphs on embedded
fpgas. IEEE Embedded Systems Letters, 9(4):113–116, 2017.

[3] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-
layer cnn accelerators. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, page 22. IEEE Press, 2016.

[4] A. Boutros, S. Yazdanshenas, and V. Betz. Embracing diversity:
Enhanced dsp blocks for low-precision deep learning on fpgas. In
2018 28th International Conference on Field Programmable Logic and
Applications (FPL), pages 35–357, Aug 2018.

[5] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
In International Symposium on Computer Architecture (ISCA), 2016.

https://git.uwaterloo.ca/watcag-public/fpga-cascades-scalesim
https://git.uwaterloo.ca/watcag-public/fpga-cascades-rtl
https://github.com/mlperf


[6] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massen-
gill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan
Adams, Mahdi Ghandi, Stephen Heil, Prerak Patel, Adam Sapek, Gabriel
Weisz, Lisa Woods, Sitaram Lanka, Steven K. Reinhardt, Adrian M.
Caulfield, Eric S. Chung, and Doug Burger. A configurable cloud-
scale dnn processor for real-time ai. In Proceedings of the 45th Annual
International Symposium on Computer Architecture, ISCA ’18, pages
1–14, Piscataway, NJ, USA, 2018. IEEE Press.

[7] Yao Fu, Ephrem Wu, Ashish Sirasao, Sedny Attia, Kamran Khan, and
Ralph Wittig. Deep learning with int8 optimization on xilinx devices.
Xilinx Whitepaper, 2016.

[8] N. Kapre. Implementing fpga overlay nocs using the xilinx ultrascale
memory cascades. In 2017 IEEE 25th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages
40–47, April 2017.

[9] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv
preprint arXiv:1605.04711, 2016.

[10] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli
Wang. A high performance fpga-based accelerator for large-scale
convolutional neural networks. In 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–9. IEEE,
2016.

[11] Zhiqiang Liu, Yong Dou, Jingfei Jiang, Jinwei Xu, Shijie Li, Yongmei
Zhou, and Yingnan Xu. Throughput-optimized fpga accelerator for deep
convolutional neural networks. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 10(3):17, 2017.

[12] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. An automatic
rtl compiler for high-throughput fpga implementation of diverse deep
convolutional neural networks. In 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–8. IEEE,
2017.

[13] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-sun Seo. Optimizing
loop operation and dataflow in fpga acceleration of deep convolutional
neural networks. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 45–54. ACM,
2017.

[14] Yufei Ma, Naveen Suda, Yu Cao, Jae-sun Seo, and Sarma Vrudhula.
Scalable and modularized rtl compilation of convolutional neural net-
works onto fpga. In 2016 26th International Conference on Field
Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2016.

[15] Nick Mehta. Pushing performance and integration with the ultrascale+
portfolio. Xilinx Whitepaper, 2015.

[16] Mohammad Motamedi, Philipp Gysel, and Soheil Ghiasi. Placid: a plat-
form for fpga-based accelerator creation for dcnns. ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM),
13(4):62, 2017.

[17] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr,
Randy Huang, Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Sri-
vatsan, Duncan Moss, Suchit Subhaschandra, et al. Can fpgas beat gpus
in accelerating next-generation deep neural networks? In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 5–14. ACM, 2017.

[18] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin
Zhou, Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going
deeper with embedded fpga platform for convolutional neural network.
In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 26–35. ACM, 2016.

[19] Atul Rahman, Jongeun Lee, and Kiyoung Choi. Efficient fpga acceler-
ation of convolutional neural networks using logical-3d compute array.
In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1393–1398. IEEE, 2016.

[20] Ananda Samajdar, Yuhao Zhu, Paul N. Whatmough, Matthew Mattina,
and Tushar Krishna. Scale-sim: Systolic CNN accelerator. CoRR,
abs/1811.02883, 2018.

[21] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh.
From high-level deep neural models to fpgas. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, page 17.
IEEE Press, 2016.

[22] Yongming Shen, Michael Ferdman, and Peter Milder. Overcoming
resource underutilization in spatial cnn accelerators. In 2016 26th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), pages 1–4. IEEE, 2016.

[23] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional neural net-
works. In Proceedings of the 2016 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, pages 16–25. ACM, 2016.

[24] Stylianos I Venieris and Christos-Savvas Bouganis. fpgaconvnet: A
framework for mapping convolutional neural networks on fpgas. In 2016
IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 40–47. IEEE, 2016.

[25] Stylianos I Venieris and Christos-Savvas Bouganis. Latency-driven
design for fpga-based convolutional neural networks. In 2017 27th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), pages 1–8. IEEE, 2017.

[26] Pete Warden. Why gemm is at the heart of deep learning. Peter Warden’s
Blog, 2015.

[27] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin
Wang, Han Hu, Yun Liang, and Jason Cong. Automated systolic array
architecture synthesis for high throughput cnn inference on fpgas. In
Proceedings of the 54th Annual Design Automation Conference 2017,
page 29. ACM, 2017.

[28] Mike Wissolik, Darren Zacher, Anthony Torza, and Brandon Da. Virtex
ultrascale+ hbm fpga: A revolutionary increase in memory performance.
Xilinx Whitepaper, 2017.

[29] E. Wu, X. Zhang, D. Berman, and I. Cho. A high-throughput reconfig-
urable processing array for neural networks. In 2017 27th International
Conference on Field Programmable Logic and Applications (FPL),
pages 1–4, Sep. 2017.

[30] Ephrem Wu, Xiaoqian Zhang, David Berman, Inkeun Cho, and John
Thendean. Compute-efficient neural-network acceleration. In Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA 2019, Seaside, CA, USA, February
24-26, 2019, pages 191–200, 2019.

[31] Xilinx. Ug570: Ultrascale architecture configuration user guide. Xilinx
Whitepaper, 2018.

[32] Xilinx. Versal: The first adaptive compute acceleration platform (acap).
Xilinx Whitepaper, 2018.

[33] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and
Jason Cong. Optimizing fpga-based accelerator design for deep con-
volutional neural networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages
161–170. ACM, 2015.

[34] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan,
and Jason Cong. Caffeine: Towards uniformed representation and
acceleration for deep convolutional neural networks. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2018.

[35] Chen Zhang, Di Wu, Jiayu Sun, Guangyu Sun, Guojie Luo, and Jason
Cong. Energy-efficient cnn implementation on a deeply pipelined fpga
cluster. In Proceedings of the 2016 International Symposium on Low
Power Electronics and Design, pages 326–331. ACM, 2016.

[36] Jialiang Zhang and Jing Li. Improving the performance of opencl-based
fpga accelerator for convolutional neural network. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 25–34. ACM, 2017.


	Introduction
	Background
	Compute Libraries in ML Workloads
	Data Reuse within DNN Accelerators
	Dedicated Cascade Interconnect

	High-Frequency FPGA Cascades
	Building Block: Convolution
	Building Block: Matrix-Vector Multiply
	Scaling and Tiling
	System Design Strategy
	Overall FPGA Architecture

	Methodology
	FPGA Mapping
	Performance Analysis of MLPerf Benchmarks

	Evaluation
	Frequency Trends
	Performance Trends

	Lessons
	Conclusions
	References

