
Enabling Continuous Learning through Neural
Network Evolution in Hardware

Ananda Samajdar
Georgia Institute of Technology

Atlanta, GA
anandsamajdar@gatech.edu

Kartikay Garg
Georgia Institute of Technology

Atlanta, GA
kgarg40@gatech.edu

Tushar Krishna
Georgia Institute of Technology

Atlanta, GA
tushar@ece.gatech.edu

Abstract
In the past few years we have witnessed monumental ad-
vancements in artificial intelligence (AI), thanks to the inven-
tion of deep learning techniques. However, we are still far
away from implementing adaptive general purpose intelli-
gent systems. Supervised learning techniques in the present
depend upon large amounts of structured training data and
have high computational cost. Moreover coming up with a
model requires a lot of manual effort, with experts tweaking
hyper-parameters over several iterations of trial and error.

Reinforcement Learning (RL) and Evolutionary Algorithm
(EA) based methods circumvent this problem by continu-
ously interacting with the environment and updating the
models based on obtained rewards. This closed loop approach
provides adaptability and is a promising solution for general
purpose AI. However, deploying these algorithms on ubiqui-
tous autonomous agents (robots/drones) demands extremely
high energy-efficiency for the following reasons: (i) tight
power and energy budgets, (ii) continuous interaction with
the environment, (iii) intermittent or no connectivity to the
cloud to run heavy-weight processing. This in turn drives
the choice of algorithm and the platform of implementation.

We demonstrate that EA offer a tremendous opportunity
for parallelism and HW-SW co-design. One can not only
parallelize across multiple individuals of a population, but
also across genes (NN nodes and connections) within an in-
dividual, enabling orders of magnitude speedup and energy
reduction for performing evolution and thereby learning. We
propose a novel hardware accelerator called EVE (EVolu-
tionary Engine) that is optimized for running the evolu-
tionary learning steps (crossovers and mutations). We imple-
ment EvE in 15nm Nangate FreePDK and observe that EvE
achieves over five to six orders of magnitude in energy
efficiency over desktop and embedded CPUs and GPUs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Training
Engine

“Labelled”
Big Data

Environ-
ment

Learning
Engine

Inference
Engine

Reward State

Input: Environment state

Output: Action

GPU/
ASIC/
FPGA

EvE: Evolution Engine
(this work)

(b) Reinforcement Learning

Inference
Engine

GPU/ ASIC/ FPGAGPU/ ASIC

State

Error

Input

Output

(a) Supervised Learning

Figure 1. Conceptual view of where EvE fits within learning.

ACM Reference Format:
Ananda Samajdar, Kartikay Garg, and Tushar Krishna. 2018. En-
abling Continuous Learning through Neural Network Evolution in
Hardware. In Proceedings of ACM Conference (Conference’17). ACM,
NewYork, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Ever since modern computers were invented, the dream of
creating an intelligent entity has captivated humanity. We
are fortunate to live in an era when, thanks to deep learn-
ing, computer programs have paralleled, or in some cases
even surpassed human level accuracy in tasks like visual
perception or speech synthesis. These advancements are
monumental and have transcended all past expectations. So
much so, that popular celebrities express concerns over cre-
ation of nefarious omnipotent AI. However in reality, despite
being equipped with powerful algorithms and computers,
we are still far away from realizing general purpose AI.

The problem lies in the fact that the development of super-
vised learning based solution is mostly open loop (Fig. 1(a)).
A typical deep learning model is created by hand-tuning the
topology by a team of experts over multiple iterations, often
by trial and error. The said topology is then trained over gar-
gantuan amounts of labeled data, often in order of petabytes,
over weeks at a time on high end computing clusters. The
trained model hence obtained, although remarkable for the
task for which its trained, is highly rigid and cannot adapt to
any other task. This limits applicability of supervised learn-
ing for problems for which structured labeled data is not
available, or the nature of the problem is not static.
Reinforcement Learning (RL) is one possible solution for

realizing general purpose AI. Algorithms based on RL work
by interacting with the environment by a set of actions taken
with respect to the given state of the environment, as shown
in Fig. 1(b). At the heart of these algorithm is a policy func-
tion, which determines which action to be taken. Each inter-
action with environment generates a reward value, which
is an measure of effectiveness of the action for the given
problem. The algorithm uses reward values obtained in each

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

START

STOP

Reproduce next
generation

Evaluate
Population Fitness

Generate Initial
Population (N)

Desired
fitness?

Evolutionary Algorithm

Interaction with
 environment

No

Yes

Create
parent pool

Add to
offspring pool

Choose
parents MutationCrossover

Num
offsprings =

N?

START

STOP

Yes

No
Fitness
function

Probability Probability

Configurable
Paramaters

NEAT

(a) (b)

Figure 2. (a) Flow chart depicting the steps in any Evolutionary
Algorithm (EA) (b) Expanded view to show the reproduction steps
in NEAT

iteration to update the policy function until it converges
upon the optimal policy.

There have been limited but extremely promising demon-
strations of RL [1, 2] - the most famous being Google Deep-
Mind’s supercomputer autonomously learning how to play
AlphaGo and beating the human champion [1]. However,
moving RL algorithms from supercomputers to robots/drones
at the edge introduces tremendous architecture and system-
level challenges from a compute, memory and energy-efficiency
point-of-view. Continuous interaction with an environment
through an embedded energy-constrained device with lit-
tle/no connectivity to a backend cloud dictates the the choice
of algorithm, platform, and implementation. This work at-
tempts to take a first-key step towards this direction.
We focus on Evolutionary algorithms (EA) which are a

class of algorithms similar to traditional RL, but computa-
tionally more scalable [38]. EAs are blackbox optimization
methods and do not have the means to capture the nature of
the environment via a policy function or any similar embed-
ding. Instead EAs start with a population of simple agents
or individuals which interact with the environment and ob-
tain a reward value, similar to RL. The reward values are
translated into fitness scores for each individual. The fitness
score is then used to select a set of individuals who will be
responsible for generating next generation of individuals
using genetic algorithms (GA). We will discuss EAs in detail
later in Section 2.3.

We perform a detailed computation and memory profiling
of an EA called NEAT [44] and identify several opportuni-
ties for parallelism (Gene level parallelism - GLP) and data
reuse(Genome level reuse - GLR). We use the results of the
analysis to drive the design of a hardware accelerator called
EvE for extracting maximum energy and compute efficiency.
Fig. 1(b) demonstrates where EvE would fit within an au-
tonomous learning engine. EvE provides over five-orders of
magnitude higher efficiency over general-purpose desktop
and mobile CPUs and GPUs.
2 Background
2.1 Supervised Learning
Supervised learning is arguably the most widely used learn-
ing method used in the present. The basic idea is, that the
output of the model is computed for a given set of input and

is compared against an existing label or the ground truth
to generate an error value. Based on the error obtained the
parameters of the model is perturbed such that the error is
reduced. This is done iteratively till convergence is achieved.

Among the various trainingmethods available today, Back-
propagation (BP) [36] is the most popular and is exclusively
used for training deep networks. However, BP has the follow-
ing limitations as the learning/training engine for general
purpose AI:
• Dependence on large structured & labeled datasets to
perform efficiently [20, 37]
• Effectiveness is heavily tied to the NN topology, as we
witnessed with deeper convolution topologies [25, 27]
that led to the birth of Deep Learning.
• Extreme compute and memory requirements. It often

takes weeks to train a deep network on a compute cluster
consisting of several high end GPUs.

2.2 Reinforcement Learning (RL)
Reinforcement learning is used when the structure of the un-
derlying policy function is not known. For instance, suppose
we have a a robot learning how to walk. The system has a
finite set of outputs (say which leg to move when and in what
direction), and the aim is to learn the right policy function so
that the robot moves closer to its target destination. Starting
with some random initialization, the agent performs a set
of actions, and receives an reward from the environment
for each of them, which is a metric for success or failure for
the given goal. The goal of the RL algorithm is to update
its policy such that future reward could be maximized. At a
fundamental level, RL algorithms learn the representation
of the environment (which can be modeled as a NN). RL al-
gorithms perturb the actions, and perform backpropagation
to compute the update to the parameters. RL algorithms can
learn in environments with scarce datasets and without any
assumption on the underlying NN topology, but the reliance
on BP still makes them computationally very expensive.
2.3 Evolutionary Algorithms (EA)
EA get their name from biological evolution, since at an
abstract level they be seen as sampling a population of indi-
viduals and allowing the successful individuals to determine
the constitution of future generations. The algorithm starts
with a pool of agents or individuals, each one of which inde-
pendently tries to perform some action on the environment
to solve the problem. Each individual agent is then assigned a
fitness value, depending upon the effectiveness of the action
taken by them. Similar to biological systems, each agent is
represented by a list of parameters called a genome. Each
of these parameters, called genes, encode a particular char-
acteristic of the individual. After the fitness calculation is
done for all, next generation of individuals are created by
crossing over and mutating the genomes of the parents. This
step is called reproduction and only a few individuals, with

2

Re
lat

ive
 fr

eq
ue

nc
y

Re
lat

ive
 fr

eq
ue

nc
y

Re
lat

ive
 fr

eq
ue

nc
y

Re
lat

ive
 fr

eq
ue

nc
y

(a) (b)

0
10
20
30
40
50
60
70
80
90

0 10 20 30 40 50 60 70 80 90 100Fi
tt
es
t	P

ar
en

t	R
eu

se

Generation

Acrobot Airrad	ram Alien	RAM
Cartpole	v0 Lunar	Lander Mountain	Car

(c)

Figure 3. (a) Computation (i.e., Crossover and Mutations) Ops and (b) Memory Footprint of applications from OpenAI Gym in every
generation. A distribution is plotted across all generations till convergence and 100 separate runs of each application. (c) Plot depicting the
fitness of the fittest parent in a generations for 100 separate runs across workloads.

Genome ID

Gene type

Attribute 4

Src node for conn gene
Node number for node gene

Attribute 1

Dest node for conn gene
Reserved for node gene

Gene IDGene ID Attribute 2 Attribute 3
Bias for node gene Activation for node gene

Response for node gene Aggregation for node gene

Reserved for conn geneWeight for conn gene

Enabled node for
conn gene

Reserved for conn gene

Reserved

}

Type for node gene
00: Hidden layer
01: Input layer
10: Output layer

Reserved for connection gene

Figure 4. Data structure used for Genes in EvE

highest fitness values are chosen to act as parents in-order
to ensure that only the fittest genes are passed into the next
generation. These steps are repeated multiple times until
some completion criteria is met. Fig. 2(a) illustrates the flow.
Mathematically EA can be viewed as a class of black-

box stochastic optimization techniques. The reason they are
“black-box" is because they do not make any assumptions
about the structure of the underlying function being opti-
mized, they can only evaluate it (like a lookup function). This
leads to the fundamental difference between RL and EA. Both
try to optimize the expected reward, but RL perturbs the ac-
tion space and uses backpropagation (which is computation
and memory heavy) to compute parameter updates, while
EA perturbs the parameters (i.e., nodes and connections)
directly.

3 Computational Behavior of EAs
3.1 The NEAT Algorithm
TWEANNS are a class of evolutionary algorithms which
evolve both the topology and weights for given NN simulta-
neously. Neuro-Evolution for Augmented Topologies (NEAT)
is one of the algorithms in this class developed by Stanley
et al [44]. Fig. 2(b) depicts the steps and flow of the NEAT
algorithm. Without loss of generality, we use NEAT for all
our studies in this work.

Population. The population in NEAT is the set of NN
topologies in every generation that each run in the environ-
ment to collect a fitness score.

Genes. The basic building block in NEAT is a gene, which
can represent either a NN node (i.e., neuron), or a connection
(i.e., synapse). An overview of a gene is shown in Fig. 4. Each
node gene can uniquely be described by an id, the nature of
activation (e.g., ReLU) and the bias associated with it. Each
connection can be described by its starting and end nodes,
and its hyper-parameters (such as weight, enable). A genome,
which the collection of these genes, uniquely describes one
NN in the population.

Initialization. NEAT starts with a initial population of
very simple topologies comprising only the input and the
output layer. It evolves into more complex and sophisticated
topologies using the mutation and crossover functions.
Mutation. Akin to biological operation, mutation is the

operation in which a child gene is generated by tweaking the
parameters of the parent gene. For instance, a connection
gene can be mutated by modifying the weight parameter
of the parent gene. Mutations can also involve addition or
deletion of genes, with a certain probability.

Crossover. Crossover is the name of the operation in
which a child gene for the next generation is created by
cherry picking attributes from two parent genes.

Speciation and Fitness Sharing. EAs in essence work by pit-
ting the individuals against each other in a given population
and competitively selecting the fittest. However, this policy
can lead premature pruning of new individuals with useful
topological features. NEAT counteracts this by using specia-
tion and fitness sharing. Speciation works by grouping a few
individuals within the population with a particular niche.
Within a species, the fitness of the younger individuals is
artificially increased (fitness sharing) so that they are not
obliterated when pitted against older, fitter individuals, thus
ensuring that the new innovations are protected for some
generations and given enough time to optimize.

3.2 Compute and Memory Trends
Open AI gym [10] is a popular platform for testing rein-
forcement learning algorithms. The platform has multiple
environments for simulating a variety of tasks like robotic
control, locomotion, gameplay and so on. We selected seven
environments - acrobot, bipedal, cartpole_v0, lunar_lander,
airraid_ram, alien_ram, amidar_ram - and evolved one agent
for each environment using NEAT. In all the experiments
we used a population size of 150, and started with a bare
minimum topology of input and output layer. The only thing
changed between the experiments is the fitness function,
which in most cases is the reward or an affine transforma-
tion of the reward value obtained from the environment.

Compute Trends. Fig. 3(a) show the distribution of the
number of compute (crossover and mutation) operations
within a generation. The distribution is plotted across all

3

generations till the application converged and across 100
runs of each application.

Opportunity for Parallelism.Mutations and crossovers
of genes of a genome can occur in parallel, demonstrating
the raw parallelism provided by EAs. We observe that the
mutations and crossovers are in thousands in one class of
applications, and are in the range of hundred thousands in
another class. We term this as gene level parallelism (GLP)
in this work. Moreover, the amount of GLP scales as the size
of each NN (i.e., genome grows).

Memory Trends. Fig. 3(b) shows the distribution inmem-
ory footprint of the population in each generation for all the
workloads. For EAs, the memory footprint is simply the size
(i.e., number of genes) of all genomes (NNs) in the population
in that generation. Within OpenAI gym, even for the large
workloads corresponding to the Atari game environments,
the memory footprint of the entire population is shy of 1MB.

Opportunity for Data Reuse. Given that only a handful
of parents contribute to creation of next generation, one
parent genome is reused multiple times during crossover.
We refer to this property as genome level reuse(GLR). This
behavior can be leveraged to provide energy efficiency and
ease memory bandwidth. Fig. 3(c) demonstrates that in most
cases one parent is on average used around 20 children,
while in some cases like Cartpole and Lunar lander, this
GLR number is around 80 for a population size of 150.
3.3 Opportunity for Spatial Acceleration
The compute and memory behaviors lead us to the following
insights for our accelerator design:
• Since the compute operations fall into two classes, crossovers
and mutations, a custom implementation of these com-
pute units in hardware can create low footprint yet high
performance power efficient solutions.
• The GLP offered by EAs suggest that it is possible to
evolve NNs with reasonable accuracy in a short period
of time, if enough compute elements are available.
• A spatial accelerator can be developed by packing a large
number of these compute units together, which essen-
tially provides cheap compute in large numbers within a
tight power envelope.
• Given the reasonable memory foot print (less than 1MB)

and GLR opportunity, it is evident that a sufficiently sized
on chip memory can help remove/reduce off-chip ac-
cesses significantly, saving both energy and bandwidth.
• If we can reduce the energy consumption of the compute
elements and store all genomes locally (on-chip or in
memory), complex behaviors can be evolved even in
mobile autonomous agents.

4 EvE Microarchitecture
With the motivations discussed in the previous sections, we
designed a hardware accelerator ensuring maximum utiliza-
tion of GLP, which we describe next.

Memory

…

Gene merge Gene split

Interconnect

Evolution Engine (EVE)

PE

Config
PRNG

PEPEPEPE

Selection

PE

Inference
Engine

Child
Genomes

Parent
Genomes

Genome

Reward

Parent 1
Gene

Crossover and
Perturbation

Module

Delete Gene Mutation
Module

Add Gene Mutation
Module

Child
Gene

Node ID
 regs

Random
numbers

Mutation
and

Crossover
Probabilites

Parent 2
Gene

PRNG Config

Processing
Element (PE)Genome: Neural Network

Gene: Node or Connection
Population Size = n

Figure 5. Schematic of the architecture of EvE and interaction
with memory and inference engine. Expanded schematic shows
internals of PE in EvE.

Gene Encoding Fig. 4 shows the structure for a gene we
use in our design. NEAT uses two types of genes to construct
a genome, a node gene which describe vertices and the con-
nection gene which describe the edges in the neural network
graph. We use 64 bits to capture both types of genes.

4.1 Processing Element (PE)
Fig. 5 shows the schematic of our PE. It has a four-stage
pipeline. These stages are shown in Fig. 6. Perturbation,
Delete Gene and Add Gene are three kinds of mutations
that our design supports.

Crossover Engine. The crossover engine receives two
genes, one from each parent genome. As described in Sec-
tion 3.1, crossover requires picking different attributes from
the parent genome to construct the child genome. The ran-
dom number from the PRNG is compared against 0.5 and
used to select one of the parents for each of the attributes.
We provide the ability to program in a bias, depending on
which of the two parents contributes more attributes (i.e., is
preffered) to the child. This logic is replicated for each of the
4 attributes.

Perturbation Engine. A perturbation probability is used
to generate a set of mutated values for each of the attributes
in the child gene that was generated by the crossover engine.

Delete Gene Engine. There are two types of genes in a
given genome, node and connection, and implementing gene
deletion for each of them differs. A gene is deleted depending
on the deletion probability, and compared against a PRNG.
However, gene deletion is slightly more complicated since
a node gene that has been deleted could leave an already
created connection gene floating. Gene deletion for node
and connection genes is handled in the following way. For a
node gene, two things are checked, the deletion probability
and number of nodes deleted in the genome. If the number
of nodes deleted is more than a certain threshold, the gene
is not deleted. This is required in some EAs, such as NEAT,
to ensure a minimum number of nodes in the NN. In case
the logic decides to delete the gene, its node ID is saved in
the deleted nodes list, and a counter representing number of
nodes deleted is incremented by one. For connection genes,
the source and destination nodes are checked against the list

4

}

Select
gene

+
Num deleted

nodes

>

Deletion
Probability

Rand

1
Node
Type

Node
ID

Gene from
Perturbation Engine

Demux Select

Node IDs

Child Gene

>

Addition
Probability

Rand

Default Node Gene

Default Conn Gene

from Node
ID regs

Select
Gene}

Gene from
Delete Gene

Engine

Child Genes

Delete Gene Engine Add Gene Engine

0.
5

Ran
d

> Sel
0.5

Ran
d

> Sel
0.5

Ran
d

> Sel

Bias

0.5

Rand
> Sel

 Gene 2
Gene 1

Crossover
Gene

Mutated
ValMutated

ValMutated
Val

Rand
Limit &

Quantize
Mutated

Val
Mutated

value

Ra
nd

Rand

>Perturb
Prob Sel Mutation

select
Child gene

Gene
type

Parent Gene 1 Parent Gene 2

Child Gene

Attributes

Crossover Engine

Perturbation Engine

Node ID
regs

- Deleted
- Interm
- Max

Config: Crossover and Mutation (Perturb, Add, Delete) Probability Random number from PRNG

Figure 6. Schematic depicting the various modules of the Eve PE.

of deleted nodes to figure out if the connection is floating or
not. If it is found to be floating, it is deleted as well.

AddGene Engine. This is the fourth and final stage of the
PE pipeline. As in the case of the previous stage, depending
upon the type of the gene, the implementation varies. To
add a new node gene, the logic inserts a new gene with
default attributes and a node ID greater than any other node
present in the network. Additionally two new connection
genes are generated and the incoming connection gene is
dropped. The addition of a new connection gene is carried
out in two cycles. When a new connection gene arrives, the
selection logic compares a random number with the addition
probability. If the random number is higher, then the source
of the incoming gene is stored. When the next connection
gene arrives, the logic reads the destination for that gene,
appends the stored source value and default attributes, and
creates a new connection gene. This mechanism ensures that
any new connection gene that is added by this stage always
has valid source and destinations.

4.2 Gene Movement
Next, we describe all blocks that manage gene movement.

Gene Selector. The selection logic interprets the reward
values obtained from inference engine into corresponding fit-
ness scores. Once all the fitness values are available, the logic
readjusts fitnesses to implement fitness sharing in NEAT.
The readjusted fitnesses are then compared to a threshold
to identify parents for the next generation. This list is hence
forwarded to the Gene Split block.
Gene Split. The Gene Split block orchestrates the move-

ment of genes from the Genome Buffer to the PEs inside EvE.
In the crossover stage, the keys (i.e., node id) for both the
parent genes need to be the same. However both the parents
need not have the same set of genes or there might be a
misalignment between the genes with the same key among
the participating parents. The gene split block therefore sits
between the PEs and the Genome Buffer to ensure that the
alignment is maintained and proper gene pairs are sent to
the PEs every cycle.

Gene Merge. Once a child gene is generated, it is written
back to the Gene Memory as part of the larger genome it is
part of. This is handled by the Gene Merge block.

Pseudo Random Number Generators (PRNG). The
PRNG feeds a 8-bit random numbers every cycle to all the
PEs, as shown in Fig. 5. We use the XOR-WOW algorithm to
implement our PRNG (also used within NVIDIA GPUs).

Interconnection network The interconnection network
manages the distribution of parent genes from the Gene Split
to the PEs and collection of child genes at the Gene Merge.
We explored two design options. Our base design uses sepa-
rate high-bandwidth buses, one for the distribution and one
for the collection [14]. However, recall that the NEAT algo-
rithm offers opportunity for reuse of parent genomes across
multiple children, as we showed in Section 3.2. Thus we also
consider a tree-based network with multicast support [29]
and evaluate the savings in SRAM reads in Section 5.
5 Evaluation
5.1 Implementation
We implemented the EvE microarchitecture we discussed in
Section 4 in RTL and synthesized the design using Nangate
15nm PDK at 200MHz target. We list all the parameters of
EvE for this design point in a table in Fig. 7(a). The post
synthesis results reported 3509.01 µm2 in area footprint for
each PE, consuming 0.808 mW of power. We also synthesized
a 64x64 SRAM block using TSMC 28nm memory compilers
and applied Dennard’s scaling [16] to estimate power and
area numbers at 15nm.We choose a power budget of 250 mW
at a frequency of 200MHz, motivated by recently published
DNN accelerators chips [14, 17, 32, 41]. Fig. 7(b) shows that
we reach this power limit with 256 PEs. Fig. 7(c) shows that
a design with 256 EvE PEs demands about 1.1mm2 in area.
5.2 Evaluation Methodology
We modify the code in NEAT python library [5] to generate
a trace of reproduction operations for the various workloads
presented in Section 3.2. Each line on the trace captures the
generation, the child gene and genome id, the type of oper-
ation - mutation or crossover, and the parameters changed
or added or deleted by the operations. These traces serve as
proxy for our workloads when we evaluate our accelerator
and GPU implementations.

CPU evaluations. We measure the completion time and
average power consumption by running traces on 6th gen
Intel i7 desktop CPU and ARM Cortex A57 on nVidia Jetson

5

(c)(b)(a)

0

20

40

60

80

100

120

140

160

2 4 8 16 32 64 128 256 512 1024

TH
RO

U
G
H
PU

T	
(O
PS
/C
YC
LE
)

NUM	PE

Airraid	RAM

Alien	RAM

Asterix	RAM

Cartpole	V0

Lunar	Lander

Mountain	Car

(d)

0

100

200

300

400

500

600

2 4 8 16 32 64 128 256

SR
AM

 re
ad

s p
er

 c
yc

le
s

Num PE

Bus
Muticast Tree

(e)

0
100
200
300
400
500
600
700
800
900

1000

2 4 8 16 32 64 12
8
25
6
51
2
10
24

Po
w

er
 in

 m
W

Number of PEs

Net Power

SRAM Power

PE Power

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2 4 8 16 32 64 12
8

25
6

51
2
10
24

Ar
ea

 in
 sq

 m
m

Number of PEs

PE Area SRAM AreaTech node 15nm
Area 1.1 mm2
Power 226.44 mW
Frequency 200 MHz
Voltage 1.0 V
Num PE 256
SRAM banks 24
SRAM depth 64

Figure 7. (a) Parameters for EvE implementation (b) Variation of power consumption of EvE with number of PEs. (c) Variation in area
footprint of EvE with number of PEs. (d) Throughput variation with number of PEs in various Open AI workloads. (e) SRAM reads per cycle
with a bus vs multicast tree (that leverages genome-level reuse) interconnect inside EvE.

0

500

1000

1500

2000

2500

Cartpole V0 Lunar Lander Mountain Car

En
er

gy
 in

 m
J

Jetson GPU Desktop GPU

0
10000
20000
30000
40000
50000
60000
70000

Airraid RAM Alien RAM Asterix RAM

En
er

gy
 in

 m
J

Jetson CPU Laptop CPU

0

0.00005

0.0001

0.00015

0.0002

Cartpole V0 Lunar
Lander

Mountain
Car

En
er

gy
 in

 m
J

0.004185
0.00419

0.004195
0.0042

0.004205
0.00421

Airraid RAM Alien RAM Asterix RAM

En
er

gy
 in

 m
J

EvE

Figure 8. Charts showing energy consumption for reproduction
by CPU, GPU and EvE for different workloads. The top row is for
CPU and GPU; the bottom row is for EvE

TX2 board. To measure the power on desktop CPUs we use
Intel’s power gadget tool [3]. While on the Jetson board we
use the onboard instrumentation amplifier INA3221.

GPU evaluations. We wrote CUDA program, to read
activities from our traces in each generation and launch them
in parallel. To ensure that the correctness of the operations
are maintained, we apply some constraints in ordering, for
example crossovers precede mutation in time. We get power
and completion time by running this program with traces
from various operations, on nVidia GTX 1080 desktop GPU
and Pascal GPU on Jetson TX2.

EvE evaluations. The traces along with the parameters
obtained by our analysis in Section 5.1 are used to estimate
the energy consumption for our chosen design point for EvE.
5.3 Performance and Energy efficiency of EvE
Fig. 7(d) we observe that throughput of EvE is proportional
to number of PEs. The plot tapers off when the number of
PEs is greater than number of genomes. When a multicast
tree is used over a bus to exploit GLR, we get an order of

n
loд (n) savings in memory reads (see Fig. 7(e)). In our case
this translates to 94% less SRAM reads.
In Fig. 8 we plot the end-to-end energy consumption for

running the evolution code of NEAT on EVE, compared
to the Desktop and Jetson (mobile) CPUs, and Laptop and
Jetson (mobile) GPU described in Section 5.2. Among the con-
ventional methods Jetson GPU is the most energy efficient.

When compared to Jetson GPU, EvE consumes 105 times less
energy in Atari environments (eg. for Airraid RAM Jetson
GPU takes up 521mJ while EvE takes 40µJ). For smaller work-
loads, the savings are more pronounced and are in order of
106 (eg. for MountainCar 98mJ on Jetson GPU vs 6µJ on EvE).

6 Related Work
Neuroevolution.Researchers have been looking into neuro-
evolution algorithms for decades [18, 40, 45]. NEAT [44]
and its variants [42, 43] have been studied and modified
for increasing accuracy [15, 21, 23]. Recent research has
demonstrated the promise of applying neuro-evolution to
generate deep neural networks [9, 22, 31, 34, 46, 47]. One prior
work proposed a hardware implementation of NEAT [30] but
focuses on running the inference across the population in
parallel. This is the first work, to the best of our knowledge,
that has attempted to parallelize the evolutionary algorithm
itself across genes and built a hardware accelerator for it.

Online Learning.Traditional RLmethods have also gained
traction in the last year with Google announcing AutoML [6,
8, 49]. In-situ learning from the environment has also been
approached from the direction of spiking neural nets (SNN) [26,
35, 39]. Recently intel released a SNN based online learning
chip Loihi [4]. IBM’s TrueNorth is also a SNN chip. SNNs
have however not managed to demonstrate accuracy across
complex learning tasks.

DNNAcceleration.Hardware acceleration of DNNs is an
active research topic with a lot of architecture choices [7, 11–
13, 19, 24, 28, 33, 48] and silicon implementations [14, 17, 32,
41]. However, all of these focus on inference, and can readily
be used in conjunction with EvE, as Fig. 5 shows.

7 Conclusion
In this work we identify an opportunity to expand the reach
of intelligent systems towards general purpose AI by au-
tomating topology generation of ANNs. Our experiments
with evolutionary algorithms show the opportunity to come
up with extremely power efficient hardware solution. We
implement a hardware accelerator for automated topology
and weight generation of ANNs. Our evaluations show five
to six orders of magnitude in energy efficiency improve-
ments over commodity CPUs and GPUs running the same
algorithm, indicating an optimistic path forward.

6

References
[1] Alphago, https://deepmind.com/research/alphago, 2017.
[2] Atari open ai environments, https://gym.openai.com/envs/#atari, 2017.
[3] Intel power gadget, https://software.intel.com/en-us/articles/

intel-power-gadget-20, 2017.
[4] Intels new self-learning chip promises to accelerate arti-

ficial intelligence, https://newsroom.intel.com/editorials/
intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/,
2017.

[5] Neat python, https://github.com/CodeReclaimers/neat-python, 2017.
[6] Using machine learning to explore neural network ar-

chitecture, https://research.googleblog.com/2017/05/
using-machine-learning-to-explore.html, 2017.

[7] Jorge Albericio et al., Cnvlutin: Ineffectual-neuron-free deep neural
network computing, ISCA, 2016, pp. 1–13.

[8] Bowen Baker et al., Designing neural network architectures using rein-
forcement learning, arXiv preprint arXiv:1611.02167 (2016).

[9] Justin Bayer et al., Evolving memory cell structures for sequence learning,
Artificial Neural Networks–ICANN 2009 (2009), 755–764.

[10] Greg Brockman et al., Openai gym, arXiv preprint arXiv:1606.01540
(2016).

[11] Tianshi Chen et al., Diannao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning, ASPLOS, 2014, pp. 269–284.

[12] Yu-Hsin Chen et al., Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks, ISCA, 2016, pp. 367–379.

[13] Yunji Chen et al., Dadiannao: A machine-learning supercomputer, Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, IEEE Computer Society, 2014, pp. 609–622.

[14] Chen, Yu-Hsin and others, Eyeriss: An Energy-Efficient Reconfigurable
Accelerator for Deep Convolutional Neural Networks, IEEE International
Solid-State Circuits Conference, ISSCC 2016, Digest of Technical Pa-
pers, 2016, pp. 262–263.

[15] David B D’Ambrosio and Kenneth O Stanley, Generative encoding for
multiagent learning, Proceedings of the 10th annual conference on
Genetic and evolutionary computation, ACM, 2008, pp. 819–826.

[16] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous,
and Andre R LeBlanc, Design of ion-implanted mosfet’s with very small
physical dimensions, IEEE Journal of Solid-State Circuits 9 (1974), no. 5,
256–268.

[17] Giuseppe Desoli et al., 14.1 a 2.9 tops/w deep convolutional neural net-
work soc in fd-soi 28nm for intelligent embedded systems, Solid-State Cir-
cuits Conference (ISSCC), 2017 IEEE International, IEEE, 2017, pp. 238–
239.

[18] Shifei Ding et al., Using genetic algorithms to optimize artificial neural
networks, Journal of Convergence Information Technology, Citeseer,
2010.

[19] Zidong Du et al., Shidiannao: Shifting vision processing closer to the
sensor, ACM SIGARCH Computer Architecture News, vol. 43, ACM,
2015, pp. 92–104.

[20] Mark Everingham et al., The pascal visual object classes (voc) challenge,
International journal of computer vision 88 (2010), no. 2, 303–338.

[21] Chrisantha Fernando et al., Convolution by evolution: Differentiable
pattern producing networks, Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference, ACM, 2016, pp. 109–116.

[22] Keyan Ghazi-Zahedi, Nmode—neuro-module evolution, arXiv preprint
arXiv:1701.05121 (2017).

[23] David Ha et al., Hypernetworks, arXiv preprint arXiv:1609.09106 (2016).
[24] Song Han et al., Eie: efficient inference engine on compressed deep neural

network, ISCA, 2016.
[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Resid-

ual Learning for Image Recognition.
[26] Nikola Kasabov et al., Dynamic evolving spiking neural networks for on-

line spatio-and spectro-temporal pattern recognition, Neural Networks
41 (2013), 188–201.

[27] Alex Krizhevsky et al., ImageNet Classification with Deep Convolutional
Neural Networks, Advances in Neural Information Processing Systems
25 (NIPS2012) (2012), 1–9.

[28] Jaeha Kung et al., Dynamic approximation with feedback control for
energy-efficient recurrent neural network hardware, ISLPED, 2016,
pp. 168–173.

[29] Hyoukjun Kwon et al., Rethinking nocs for spatial neural network ac-
celerators, Proceedings of the Eleventh IEEE/ACM International Sym-
posium on Networks-on-Chip, ACM, 2017, p. 19.

[30] Daniel Larkin et al., Towards hardware acceleration of neuroevolution
for multimedia processing applications on mobile devices, Neural Infor-
mation Processing, Springer, 2006, pp. 1178–1188.

[31] Risto Miikkulainen et al., Evolving deep neural networks, arXiv preprint
arXiv:1703.00548 (2017).

[32] Bert Moons et al., 14.5 envision: A 0.26-to-10tops/w subword-parallel
dynamic-voltage-accuracy-frequency-scalable convolutional neural net-
work processor in 28nm fdsoi, Solid-State Circuits Conference (ISSCC),
2017 IEEE International, IEEE, 2017, pp. 246–247.

[33] Angshuman Parashar et al., Scnn: An accelerator for compressed-sparse
convolutional neural networks, Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ACM, 2017, pp. 27–40.

[34] Esteban Real et al., Large-scale evolution of image classifiers, arXiv
preprint arXiv:1703.01041 (2017).

[35] Daniel Roggen et al., Hardware spiking neural network with run-time
reconfigurable connectivity in an autonomous robot, Evolvable hardware,
2003. proceedings. nasa/dod conference on, IEEE, 2003, pp. 189–198.

[36] David E Rumelhart et al., Learning representations by back-propagating
errors, Cognitive modeling 5, no. 3, 1.

[37] Olga Russakovsky et al., Imagenet large scale visual recognition chal-
lenge, International Journal of Computer Vision 115 (2015), no. 3,
211–252.

[38] Tim Salimans et al., Evolution strategies as a scalable alternative to
reinforcement learning, arXiv preprint arXiv:1703.03864 (2017).

[39] Catherine D Schuman et al., An evolutionary optimization framework
for neural networks and neuromorphic architectures, Neural Networks
(IJCNN), 2016 International Joint Conference on, IEEE, 2016, pp. 145–
154.

[40] Gene I Sher, Dxnn platform: the shedding of biological inefficiencies,
arXiv preprint arXiv:1011.6022 (2010).

[41] Jaehyeong Sim et al., 14.6 a 1.42 tops/w deep convolutional neural net-
work recognition processor for intelligent ioe systems, Solid-State Circuits
Conference (ISSCC), 2016 IEEE International, IEEE, 2016, pp. 264–265.

[42] Kenneth O Stanley, Compositional pattern producing networks: A novel
abstraction of development, Genetic programming and evolvable ma-
chines 8 (2007), no. 2, 131–162.

[43] Kenneth O Stanley et al., A hypercube-based indirect encoding for evolv-
ing large-scale neural networks.

[44] Kenneth O Stanley and Risto Miikkulainen, Efficient reinforcement
learning through evolving neural network topologies, Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation,
Morgan Kaufmann Publishers Inc., 2002, pp. 569–577.

[45] Christopher M Taylor, Selecting neural network topologies: A hybrid
approach combining genetic algorithms and neural networks, Master of
Science, University of Kansas (1997).

[46] Phillip Verbancsics and Josh Harguess, Generative neuroevolution for
deep learning, arXiv preprint arXiv:1312.5355 (2013).

[47] Lingxi Xie and Alan Yuille, Genetic cnn, arXiv preprint
arXiv:1703.01513 (2017).

[48] Chen Zhang et al., Optimizing fpga-based accelerator design for deep
convolutional neural networks, FPGA, 2015, pp. 161–170.

[49] Barret Zoph and Quoc V Le, Neural architecture search with reinforce-
ment learning, arXiv preprint arXiv:1611.01578 (2016).

7

https://deepmind.com/research/alphago
https://gym.openai.com/envs/#atari
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://software.intel.com/en-us/articles/intel-power-gadget-20
https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/
https://newsroom.intel.com/editorials/intels-new-self-learning-chip-promises-accelerate-artificial-intelligence/
https://github.com/CodeReclaimers/neat-python
https://research.googleblog.com/2017/05/using-machine-learning-to-explore.html
https://research.googleblog.com/2017/05/using-machine-learning-to-explore.html

	Abstract
	1 Introduction
	2 Background
	2.1 Supervised Learning
	2.2 Reinforcement Learning (RL)
	2.3 Evolutionary Algorithms (EA)

	3 Computational Behavior of EAs
	3.1 The NEAT Algorithm
	3.2 Compute and Memory Trends
	3.3 Opportunity for Spatial Acceleration

	4 EvE Microarchitecture
	4.1 Processing Element (PE)
	4.2 Gene Movement

	5 Evaluation
	5.1 Implementation
	5.2 Evaluation Methodology
	5.3 Performance and Energy efficiency of EvE

	6 Related Work
	7 Conclusion
	References

